Sanroma Gerard, Wu Guorong, Gao Yaozong, Shen Dinggang
IEEE Trans Med Imaging. 2014 Oct;33(10):1939-53. doi: 10.1109/TMI.2014.2327516. Epub 2014 May 30.
Recently, multiple-atlas segmentation (MAS) has achieved a great success in the medical imaging area. The key assumption is that multiple atlases have greater chances of correctly labeling a target image than a single atlas. However, the problem of atlas selection still remains unexplored. Traditionally, image similarity is used to select a set of atlases. Unfortunately, this heuristic criterion is not necessarily related to the final segmentation performance. To solve this seemingly simple but critical problem, we propose a learning-based atlas selection method to pick up the best atlases that would lead to a more accurate segmentation. Our main idea is to learn the relationship between the pairwise appearance of observed instances (i.e., a pair of atlas and target images) and their final labeling performance (e.g., using the Dice ratio). In this way, we select the best atlases based on their expected labeling accuracy. Our atlas selection method is general enough to be integrated with any existing MAS method. We show the advantages of our atlas selection method in an extensive experimental evaluation in the ADNI, SATA, IXI, and LONI LPBA40 datasets. As shown in the experiments, our method can boost the performance of three widely used MAS methods, outperforming other learning-based and image-similarity-based atlas selection methods.
最近,多图谱分割(MAS)在医学成像领域取得了巨大成功。其关键假设是,多个图谱比单个图谱更有可能正确标注目标图像。然而,图谱选择问题仍未得到探索。传统上,图像相似度用于选择一组图谱。不幸的是,这种启发式标准不一定与最终分割性能相关。为了解决这个看似简单却至关重要的问题,我们提出一种基于学习的图谱选择方法,以挑选出能带来更准确分割的最佳图谱。我们的主要思路是学习观察到的实例(即一对图谱和目标图像)的成对外观与其最终标注性能(例如使用骰子系数)之间的关系。通过这种方式,我们根据预期的标注准确性选择最佳图谱。我们的图谱选择方法具有足够的通用性,可与任何现有的MAS方法集成。我们在ADNI、SATA、IXI和LONI LPBA40数据集的广泛实验评估中展示了我们图谱选择方法的优势。如实验所示,我们的方法可以提升三种广泛使用的MAS方法的性能,优于其他基于学习和基于图像相似度的图谱选择方法。