Suppr超能文献

学习为多图谱分割对图谱进行排序。

Learning to rank atlases for multiple-atlas segmentation.

作者信息

Sanroma Gerard, Wu Guorong, Gao Yaozong, Shen Dinggang

出版信息

IEEE Trans Med Imaging. 2014 Oct;33(10):1939-53. doi: 10.1109/TMI.2014.2327516. Epub 2014 May 30.

Abstract

Recently, multiple-atlas segmentation (MAS) has achieved a great success in the medical imaging area. The key assumption is that multiple atlases have greater chances of correctly labeling a target image than a single atlas. However, the problem of atlas selection still remains unexplored. Traditionally, image similarity is used to select a set of atlases. Unfortunately, this heuristic criterion is not necessarily related to the final segmentation performance. To solve this seemingly simple but critical problem, we propose a learning-based atlas selection method to pick up the best atlases that would lead to a more accurate segmentation. Our main idea is to learn the relationship between the pairwise appearance of observed instances (i.e., a pair of atlas and target images) and their final labeling performance (e.g., using the Dice ratio). In this way, we select the best atlases based on their expected labeling accuracy. Our atlas selection method is general enough to be integrated with any existing MAS method. We show the advantages of our atlas selection method in an extensive experimental evaluation in the ADNI, SATA, IXI, and LONI LPBA40 datasets. As shown in the experiments, our method can boost the performance of three widely used MAS methods, outperforming other learning-based and image-similarity-based atlas selection methods.

摘要

最近,多图谱分割(MAS)在医学成像领域取得了巨大成功。其关键假设是,多个图谱比单个图谱更有可能正确标注目标图像。然而,图谱选择问题仍未得到探索。传统上,图像相似度用于选择一组图谱。不幸的是,这种启发式标准不一定与最终分割性能相关。为了解决这个看似简单却至关重要的问题,我们提出一种基于学习的图谱选择方法,以挑选出能带来更准确分割的最佳图谱。我们的主要思路是学习观察到的实例(即一对图谱和目标图像)的成对外观与其最终标注性能(例如使用骰子系数)之间的关系。通过这种方式,我们根据预期的标注准确性选择最佳图谱。我们的图谱选择方法具有足够的通用性,可与任何现有的MAS方法集成。我们在ADNI、SATA、IXI和LONI LPBA40数据集的广泛实验评估中展示了我们图谱选择方法的优势。如实验所示,我们的方法可以提升三种广泛使用的MAS方法的性能,优于其他基于学习和基于图像相似度的图谱选择方法。

相似文献

1
Learning to rank atlases for multiple-atlas segmentation.学习为多图谱分割对图谱进行排序。
IEEE Trans Med Imaging. 2014 Oct;33(10):1939-53. doi: 10.1109/TMI.2014.2327516. Epub 2014 May 30.
2
Learning-Based Atlas Selection for Multiple-Atlas Segmentation.基于学习的多图谱分割图谱选择
Conf Comput Vis Pattern Recognit Workshops. 2014 Jun;2014:3111-3117. doi: 10.1109/CVPR.2014.398.
10
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.

引用本文的文献

1
VoteNet: A Deep Learning Label Fusion Method for Multi-Atlas Segmentation.VoteNet:一种用于多图谱分割的深度学习标签融合方法。
Med Image Comput Comput Assist Interv. 2019 Oct;11766:202-210. doi: 10.1007/978-3-030-32248-9_23. Epub 2019 Oct 10.
2
Integrated 3d flow-based multi-atlas brain structure segmentation.基于集成 3D 流的多图谱脑结构分割。
PLoS One. 2022 Aug 15;17(8):e0270339. doi: 10.1371/journal.pone.0270339. eCollection 2022.

本文引用的文献

2
Neighbourhood approximation forests.邻域近似森林
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):75-82. doi: 10.1007/978-3-642-33454-2_10.
3
LABEL: pediatric brain extraction using learning-based meta-algorithm.标签:基于学习的元算法进行儿科脑提取。
Neuroimage. 2012 Sep;62(3):1975-86. doi: 10.1016/j.neuroimage.2012.05.042. Epub 2012 May 24.
5
Ensemble sparse classification of Alzheimer's disease.阿尔茨海默病的集成稀疏分类。
Neuroimage. 2012 Apr 2;60(2):1106-16. doi: 10.1016/j.neuroimage.2012.01.055. Epub 2012 Jan 14.
6
8
Segmenting images by combining selected atlases on manifold.通过在流形上组合选定图谱来分割图像。
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):272-9. doi: 10.1007/978-3-642-23626-6_34.
10
A supervised patch-based approach for human brain labeling.基于监督的斑块方法进行人脑标记。
IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62. doi: 10.1109/TMI.2011.2156806. Epub 2011 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验