文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于任务的基本可视化效果

Task-Based Effectiveness of Basic Visualizations.

作者信息

Saket Bahador, Endert Alex, Demiralp Cagatay

出版信息

IEEE Trans Vis Comput Graph. 2019 Jul;25(7):2505-2512. doi: 10.1109/TVCG.2018.2829750. Epub 2018 May 4.


DOI:10.1109/TVCG.2018.2829750
PMID:29994001
Abstract

Visualizations of tabular data are widely used; understanding their effectiveness in different task and data contexts is fundamental to scaling their impact. However, little is known about how basic tabular data visualizations perform across varying data analysis tasks. In this paper, we report results from a crowdsourced experiment to evaluate the effectiveness of five small scale (5-34 data points) two-dimensional visualization types-Table, Line Chart, Bar Chart, Scatterplot, and Pie Chart-across ten common data analysis tasks using two datasets. We find the effectiveness of these visualization types significantly varies across task, suggesting that visualization design would benefit from considering context-dependent effectiveness. Based on our findings, we derive recommendations on which visualizations to choose based on different tasks. We finally train a decision tree on the data we collected to drive a recommender, showcasing how to effectively engineer experimental user data into practical visualization systems.

摘要

表格数据可视化应用广泛;了解其在不同任务和数据环境中的有效性对于扩大其影响至关重要。然而,对于基本表格数据可视化在各种数据分析任务中的表现,我们知之甚少。在本文中,我们报告了一项众包实验的结果,该实验使用两个数据集,在十种常见数据分析任务中评估了五种小规模(5 - 34个数据点)二维可视化类型——表格、折线图、柱状图、散点图和饼图——的有效性。我们发现这些可视化类型的有效性在不同任务中差异显著,这表明可视化设计若能考虑与上下文相关的有效性将更有益处。基于我们的研究结果,我们得出了根据不同任务选择何种可视化的建议。最后,我们基于收集到的数据训练了一个决策树来驱动一个推荐器,展示了如何有效地将实验用户数据转化为实用的可视化系统。

相似文献

[1]
Task-Based Effectiveness of Basic Visualizations.

IEEE Trans Vis Comput Graph. 2019-7

[2]
Investigating Visual Analysis of Differentially Private Data.

IEEE Trans Vis Comput Graph. 2021-2

[3]
The Impact of Immersion on Cluster Identification Tasks.

IEEE Trans Vis Comput Graph. 2019-9-13

[4]
Task-Data Taxonomy for Health Data Visualizations: Web-Based Survey With Experts and Older Adults.

JMIR Med Inform. 2018-7-9

[5]
A user study to compare four uncertainty visualization methods for 1D and 2D datasets.

IEEE Trans Vis Comput Graph. 2009

[6]
Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support.

IEEE Trans Vis Comput Graph. 2017-8-29

[7]
What makes a visualization memorable?

IEEE Trans Vis Comput Graph. 2013-12

[8]
Fauxvea: Crowdsourcing Gaze Location Estimates for Visualization Analysis Tasks.

IEEE Trans Vis Comput Graph. 2016-2-19

[9]
A State-of-the-Art Survey of Tasks for Tree Design and Evaluation With a Curated Task Dataset.

IEEE Trans Vis Comput Graph. 2022-10

[10]
VisFlow - Web-based Visualization Framework for Tabular Data with a Subset Flow Model.

IEEE Trans Vis Comput Graph. 2017-1

引用本文的文献

[1]
Bubble-Wall Plot as a Dynamic Analytical Processing Visualization Tool for Developing Visual Warning Systems: a Case Study.

PLoS One. 2025-7-1

[2]
Exploration of Rapid Adaptation of First Contact Physiotherapy Services During the COVID-19 Pandemic: A Three-Phase Sequential Mixed-Methods Study Protocol.

Health Sci Rep. 2025-4-18

[3]
Toward Guidelines for Designing Holistic Integrated Information Visualizations for Time-Critical Contexts: Systematic Review.

J Med Internet Res. 2024-11-20

[4]
Snowflake: visualizing microbiome abundance tables as multivariate bipartite graphs.

Front Bioinform. 2024-2-5

[5]
GenoREC: A Recommendation System for Interactive Genomics Data Visualization.

IEEE Trans Vis Comput Graph. 2023-1

[6]
A Review on Strategies for Data Collection, Reflection, and Communication in Eating Disorder Apps.

Proc SIGCHI Conf Hum Factor Comput Syst. 2021-5

[7]
Which emphasis technique to use? Perception of emphasis techniques with varying distractors, backgrounds, and visualization types.

Inf Vis. 2022-4

[8]
Harmonization and Visualization of Data from a Transnational Multi-Sensor Personal Exposure Campaign.

Int J Environ Res Public Health. 2021-11-4

[9]
Improving the visual communication of environmental model projections.

Sci Rep. 2021-9-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索