Suppr超能文献

认知神经机器人中的行为学习:一种综合方法。

Behavioral Learning in a Cognitive Neuromorphic Robot: An Integrative Approach.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6132-6144. doi: 10.1109/TNNLS.2018.2816518. Epub 2018 May 2.

Abstract

We present here a learning system using the iCub humanoid robot and the SpiNNaker neuromorphic chip to solve the real-world task of object-specific attention. Integrating spiking neural networks with robots introduces considerable complexity for questionable benefit if the objective is simply task performance. But, we suggest, in a cognitive robotics context, where the goal is understanding how to compute, such an approach may yield useful insights to neural architecture as well as learned behavior, especially if dedicated neural hardware is available. Recent advances in cognitive robotics and neuromorphic processing now make such systems possible. Using a scalable, structured, modular approach, we build a spiking neural network where the effects and impact of learning can be predicted and tested, and the network can be scaled or extended to new tasks automatically. We introduce several enhancements to a basic network and show how they can be used to direct performance toward behaviorally relevant goals. Results show that using a simple classical spike-timing-dependent plasticity (STDP) rule on selected connections, we can get the robot (and network) to progress from poor task-specific performance to good performance. Behaviorally relevant STDP appears to contribute strongly to positive learning: "do this" but less to negative learning: "don't do that." In addition, we observe that the effect of structural enhancements tends to be cumulative. The overall system suggests that it is by being able to exploit combinations of effects, rather than any one effect or property in isolation, that spiking networks can achieve compelling, task-relevant behavior.

摘要

我们在这里展示了一个使用 iCub 人形机器人和 SpiNNaker 神经形态芯片的学习系统,用于解决特定对象注意力的真实世界任务。将尖峰神经网络与机器人集成在一起,如果目标仅仅是任务性能,那么引入相当大的复杂性并不能带来明显的好处。但是,我们认为,在认知机器人学的背景下,目标是理解如何计算,这种方法可能会对神经结构以及学习行为产生有用的见解,特别是如果有专门的神经硬件可用的话。认知机器人学和神经形态处理的最新进展使得这样的系统成为可能。我们使用可扩展的、结构化的、模块化的方法构建了一个尖峰神经网络,在这个网络中,可以预测和测试学习的效果和影响,并且可以自动扩展或扩展到新任务。我们引入了几个基本网络的增强功能,并展示了如何使用它们将性能引导到与行为相关的目标上。结果表明,在选定的连接上使用简单的经典尖峰时间依赖性可塑性(STDP)规则,我们可以使机器人(和网络)从较差的特定任务性能提高到良好的性能。与行为相关的 STDP 似乎对积极学习有很强的贡献:“做这个”,而对消极学习的贡献较小:“不要做那个”。此外,我们观察到结构增强的效果往往是累积的。整个系统表明,正是通过能够利用多种效果的组合,而不是孤立地利用任何一种效果或特性,尖峰网络才能实现引人注目的、与任务相关的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验