Suppr超能文献

基于事件的视觉分类中的时空下采样

Spatial and Temporal Downsampling in Event-Based Visual Classification.

作者信息

Cohen Gregory, Afshar Saeed, Orchard Garrick, Tapson Jonathan, Benosman Ryad, van Schaik Andre

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):5030-5044. doi: 10.1109/TNNLS.2017.2785272. Epub 2018 Jan 17.

Abstract

As the interest in event-based vision sensors for mobile and aerial applications grows, there is an increasing need for high-speed and highly robust algorithms for performing visual tasks using event-based data. As event rate and network structure have a direct impact on the power consumed by such systems, it is important to explore the efficiency of the event-based encoding used by these sensors. The work presented in this paper represents the first study solely focused on the effects of both spatial and temporal downsampling on event-based vision data and makes use of a variety of data sets chosen to fully explore and characterize the nature of downsampling operations. The results show that both spatial downsampling and temporal downsampling produce improved classification accuracy and, additionally, a lower overall data rate. A finding is particularly relevant for bandwidth and power constrained systems. For a given network containing 1000 hidden layer neurons, the spatially downsampled systems achieved a best case accuracy of 89.38% on N-MNIST as opposed to 81.03% with no downsampling at the same hidden layer size. On the N-Caltech101 data set, the downsampled system achieved a best case accuracy of 18.25%, compared with 7.43% achieved with no downsampling. The results show that downsampling is an important preprocessing technique in event-based visual processing, especially for applications sensitive to power consumption and transmission bandwidth.

摘要

随着对用于移动和航空应用的基于事件的视觉传感器的兴趣不断增加,使用基于事件的数据执行视觉任务的高速且高度鲁棒的算法需求也日益增长。由于事件速率和网络结构直接影响此类系统的功耗,因此探索这些传感器所使用的基于事件的编码效率非常重要。本文所呈现的工作是首次仅专注于空间和时间下采样对基于事件的视觉数据的影响的研究,并利用了多种数据集来充分探索和表征下采样操作的本质。结果表明,空间下采样和时间下采样都提高了分类准确率,并且还降低了总体数据速率。这一发现对于带宽和功率受限的系统尤为重要。对于一个包含1000个隐藏层神经元的给定网络,在N-MNIST数据集上,空间下采样系统在相同隐藏层大小下无下采样时准确率为81.03%,而空间下采样系统达到了最佳情况准确率89.38%。在N-Caltech101数据集上,下采样系统达到了最佳情况准确率18.25%,而无下采样时为7.43%。结果表明,下采样是基于事件的视觉处理中的一种重要预处理技术,特别是对于对功耗和传输带宽敏感的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验