Suppr超能文献

中国法定传染病的小尺度时空流行病学:系统综述。

Small-scale spatiotemporal epidemiology of notifiable infectious diseases in China: a systematic review.

机构信息

China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, China.

School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, China.

出版信息

BMC Infect Dis. 2022 Sep 5;22(1):723. doi: 10.1186/s12879-022-07669-9.

Abstract

BACKGROUND

The prevalence of infectious diseases remains one of the major challenges faced by the Chinese health sector. Policymakers have a tremendous interest in investigating the spatiotemporal epidemiology of infectious diseases. We aimed to review the small-scale (city level, county level, or below) spatiotemporal epidemiology of notifiable infectious diseases in China through a systematic review, thus summarizing the evidence to facilitate more effective prevention and control of the diseases.

METHODS

We searched four English language databases (PubMed, EMBASE, Cochrane Library, and Web of Science) and three Chinese databases (CNKI, WanFang, and SinoMed), for studies published between January 1, 2004 (the year in which China's Internet-based disease reporting system was established) and December 31, 2021. Eligible works were small-scale spatial or spatiotemporal studies focusing on at least one notifiable infectious disease, with the entire territory of mainland China as the study area. Two independent reviewers completed the review process based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

RESULTS

A total of 18,195 articles were identified, with 71 eligible for inclusion, focusing on 22 diseases. Thirty-one studies (43.66%) were analyzed using city-level data, 34 (47.89%) were analyzed using county-level data, and six (8.45%) used community or individual data. Approximately four-fifths (80.28%) of the studies visualized incidence using rate maps. Of these, 76.06% employed various spatial clustering methods to explore the spatial variations in the burden, with Moran's I statistic being the most common. Of the studies, 40.85% explored risk factors, in which the geographically weighted regression model was the most commonly used method. Climate, socioeconomic factors, and population density were the three most considered factors.

CONCLUSIONS

Small-scale spatiotemporal epidemiology has been applied in studies on notifiable infectious diseases in China, involving spatiotemporal distribution and risk factors. Health authorities should improve prevention strategies and clarify the direction of future work in the field of infectious disease research in China.

摘要

背景

传染病的流行仍然是中国卫生部门面临的主要挑战之一。政策制定者非常关注传染病的时空流行病学研究。我们旨在通过系统评价回顾中国小尺度(城市、县或以下)传染病的时空流行病学,总结证据,以促进更有效地预防和控制这些疾病。

方法

我们检索了四个英文数据库(PubMed、EMBASE、Cochrane Library 和 Web of Science)和三个中文数据库(CNKI、万方和中国生物医学文献数据库),检索了 2004 年 1 月(中国建立基于互联网的疾病报告系统的年份)至 2021 年 12 月 31 日期间发表的研究。合格的研究是针对至少一种法定传染病的小尺度空间或时空研究,研究区域为中国大陆全境。两名独立的审查员根据系统评价和荟萃分析的首选报告项目指南完成了审查过程。

结果

共确定了 18195 篇文章,其中 71 篇符合纳入标准,重点关注 22 种疾病。31 项研究(43.66%)使用城市级数据进行分析,34 项(47.89%)使用县级数据进行分析,6 项(8.45%)使用社区或个体数据进行分析。大约五分之四(80.28%)的研究使用率图可视化发病率。其中,76.06%的研究采用了各种空间聚类方法来探索疾病负担的空间变化,其中 Moran's I 统计量最为常见。在这些研究中,40.85%的研究探索了危险因素,其中地理加权回归模型是最常用的方法。气候、社会经济因素和人口密度是三个最常考虑的因素。

结论

小尺度时空流行病学已应用于中国法定传染病的研究,涉及时空分布和危险因素。卫生当局应改进预防策略,并明确中国传染病研究领域未来工作的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e4c/9442946/6b6461e41931/12879_2022_7669_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验