Opt Lett. 2018 Jul 15;43(14):3365-3368. doi: 10.1364/OL.43.003365.
We present a single-shot quantitative phase imaging (QPI) method based on color-multiplexed Fourier ptychographic microscopy (FPM). Three light-emitting diode (LED) elements with respective R/G/B channels in a programmable LED array illuminate the specimen simultaneously, providing triangle oblique illuminations matching the numerical aperture of the objective precisely. A color image sensor records the light transmitted through the specimen, and three monochromatic intensity images at each color channel are then separated and utilized to recover the phase of the specimen. After one-step deconvolution based on the phase contrast transfer function, the obtained initial phase map is further refined by the FPM-based iterative recovery algorithm to overcome pixel-aliasing and improve the phase recovery accuracy. The high-speed, high-throughput QPI capabilities of the proposed approach are demonstrated by imaging HeLa cells mitosis in vitro, achieving a half-pitch resolution of 388 nm across a wide field of view of 1.33 mm at camera-limited frame rates (50 fps).
我们提出了一种基于彩色复用量子相位成像术(FPM)的单次定量相位成像(QPI)方法。可编程 LED 阵列中的三个具有各自 R/G/B 通道的发光二极管(LED)元件同时照亮标本,提供精确匹配物镜数值孔径的三角形斜照明。一个彩色图像传感器记录通过标本的光,然后分离并利用每个颜色通道的三个单色强度图像来恢复标本的相位。在基于相位对比度传递函数的一步去卷积之后,通过基于 FPM 的迭代恢复算法进一步细化获得的初始相位图,以克服像素混叠并提高相位恢复精度。通过体外成像 HeLa 细胞有丝分裂来证明该方法的高速、高通量 QPI 能力,在相机限制的帧率(50 fps)下,在 1.33mm 的宽视场中实现了 388nm 的半节距分辨率。