Suppr超能文献

用于生物医学成像的光学叠层成像术:最新进展与未来方向 [特邀报告]

Optical ptychography for biomedical imaging: recent progress and future directions [Invited].

作者信息

Wang Tianbo, Jiang Shaowei, Song Pengming, Wang Ruihai, Yang Liming, Zhang Terrance, Zheng Guoan

机构信息

Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.

These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2023 Jan 3;14(2):489-532. doi: 10.1364/BOE.480685. eCollection 2023 Feb 1.

Abstract

Ptychography is an enabling microscopy technique for both fundamental and applied sciences. In the past decade, it has become an indispensable imaging tool in most X-ray synchrotrons and national laboratories worldwide. However, ptychography's limited resolution and throughput in the visible light regime have prevented its wide adoption in biomedical research. Recent developments in this technique have resolved these issues and offer turnkey solutions for high-throughput optical imaging with minimum hardware modifications. The demonstrated imaging throughput is now greater than that of a high-end whole slide scanner. In this review, we discuss the basic principle of ptychography and summarize the main milestones of its development. Different ptychographic implementations are categorized into four groups based on their lensless/lens-based configurations and coded-illumination/coded-detection operations. We also highlight the related biomedical applications, including digital pathology, drug screening, urinalysis, blood analysis, cytometric analysis, rare cell screening, cell culture monitoring, cell and tissue imaging in 2D and 3D, polarimetric analysis, among others. Ptychography for high-throughput optical imaging, currently in its early stages, will continue to improve in performance and expand in its applications. We conclude this review article by pointing out several directions for its future development.

摘要

叠层成像术是一种对基础科学和应用科学均有推动作用的显微技术。在过去十年中,它已成为全球大多数X射线同步加速器和国家实验室中不可或缺的成像工具。然而,叠层成像术在可见光领域有限的分辨率和通量阻碍了其在生物医学研究中的广泛应用。该技术的最新进展已解决了这些问题,并提供了只需最少硬件修改的高通量光学成像交钥匙解决方案。目前所展示的成像通量现已超过高端全切片扫描仪。在本综述中,我们讨论了叠层成像术的基本原理,并总结了其发展的主要里程碑。根据无透镜/基于透镜的配置以及编码照明/编码检测操作,不同的叠层成像实现方式可分为四类。我们还重点介绍了相关的生物医学应用,包括数字病理学、药物筛选、尿液分析、血液分析、细胞计数分析、稀有细胞筛选、细胞培养监测、二维和三维细胞及组织成像、偏振分析等。用于高通量光学成像的叠层成像术目前尚处于早期阶段,其性能将持续提升,应用范围也将不断扩大。我们通过指出其未来发展的几个方向来结束这篇综述文章。

相似文献

引用本文的文献

3
Adaptive lensless microscopic imaging with unknown phase modulation.具有未知相位调制的自适应无透镜显微成像。
Biomed Opt Express. 2025 Feb 25;16(3):1160-1171. doi: 10.1364/BOE.555679. eCollection 2025 Mar 1.
10
On the use of deep learning for phase recovery.关于深度学习在相位恢复中的应用。
Light Sci Appl. 2024 Jan 1;13(1):4. doi: 10.1038/s41377-023-01340-x.

本文引用的文献

3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验