Suppr超能文献

设计、制作及评估一种用于人工耳蜗的聚对二甲苯薄膜电极阵列。

Design, Fabrication, and Evaluation of a Parylene Thin-Film Electrode Array for Cochlear Implants.

出版信息

IEEE Trans Biomed Eng. 2019 Feb;66(2):573-583. doi: 10.1109/TBME.2018.2850753. Epub 2018 Jul 10.

Abstract

OBJECTIVE

To improve the existing manually assembled cochlear implant electrode arrays, a thin-film electrode array (TFEA) was microfabricated having a maximum electrode density of 15 sites along an 8-mm length, with each site having a 75 μm × 1.8 μm (diameter × height) disk electrode.

METHODS

The microfabrication method adopted photoresist transferring, lift-off, two-step oxygen plasma etching, and fuming nitric acid release to reduce lift-off complexity, protect the metal layer, and increase the release efficiency.

RESULTS

Systematic in vitro characterization showed that the TFEA's bending stiffness was 6.40 × 10 N·m near the base and 1.26 × 10 N·m near the apex. The TFEA electrode produced an average impedance of 16 kΩ and a maximum current limit of 800 μA, measured with 1-kHz sinusoidal current using monopolar stimulation in saline. A TFEA prototype was implanted in a cat cochlea to obtain in vivo measurements of electrically evoked auditory brainstem and inferior colliculus responses to monopolar stimulation with 41-μs/phase biphasic pulses. Both physiological responses produced a threshold of ∼300 μA and a dynamic range of 5-8 dB above the threshold. Compared with existing arrays, the present TFEA had 10 times less bending stiffness, 97% less electrode area, and comparable physiological thresholds.

CONCLUSION

Using a simplified structure and stable fabrication method, the present TEFA produced physical and physiological performance comparable to existing commercial devices.

SIGNIFICANCE

The present TFEA represents a step closer toward an automated process replacing the labor-intensive and expensive manual assembly of the cochlear implant electrode arrays.

摘要

目的

为了改进现有的手动组装的人工耳蜗电极阵列,我们制作了一种薄膜电极阵列(TFEA),其在 8mm 长度上的最大电极密度为 15 个电极,每个电极具有 75μm×1.8μm(直径×高度)的盘形电极。

方法

所采用的微制造方法包括光刻胶转移、剥离、两步氧等离子体刻蚀和发烟硝酸释放,以降低剥离复杂性、保护金属层并提高释放效率。

结果

系统的体外特性表明,TFEA 的弯曲刚度在基底附近为 6.40×10 N·m,在尖端附近为 1.26×10 N·m。TFEA 电极产生的平均阻抗为 16 kΩ,最大电流限制为 800μA,在盐水中使用单极刺激用 1-kHz 正弦电流测量。TFEA 原型被植入猫耳蜗,以获得单极刺激用 41-μs/相双相脉冲的电诱发听觉脑干和下丘的体内测量。这两种生理反应都产生了约 300μA 的阈值和 5-8dB 高于阈值的动态范围。与现有阵列相比,本 TFEA 的弯曲刚度低 10 倍,电极面积小 97%,但生理阈值相当。

结论

使用简化的结构和稳定的制造方法,本 TFEA 产生的物理和生理性能与现有的商业设备相当。

意义

本 TFEA 代表了朝着自动化过程的进一步发展,该过程可以取代人工耳蜗电极阵列的劳动密集型和昂贵的手动组装。

相似文献

1
Design, Fabrication, and Evaluation of a Parylene Thin-Film Electrode Array for Cochlear Implants.
IEEE Trans Biomed Eng. 2019 Feb;66(2):573-583. doi: 10.1109/TBME.2018.2850753. Epub 2018 Jul 10.
2
An improved cochlear implant electrode array for use in experimental studies.
Hear Res. 2011 Jul;277(1-2):20-7. doi: 10.1016/j.heares.2011.03.017. Epub 2011 Apr 22.
4
Study of the Carrier-Aided Thin Film Electrode Array Design for Cochlear Insertion.
Micromachines (Basel). 2018 Apr 27;9(5):206. doi: 10.3390/mi9050206.
5
Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion.
Biomed Microdevices. 2015 Apr;17(2):32. doi: 10.1007/s10544-015-9941-1.
6
A polymer-based multichannel cochlear electrode array.
Otol Neurotol. 2014 Aug;35(7):1179-86. doi: 10.1097/MAO.0000000000000292.
7
Silicone-coated thin film array cochlear implantation in a feline model.
Otol Neurotol. 2014 Jan;35(1):e45-9. doi: 10.1097/MAO.0000000000000186.
8
Midbrain responses to micro-stimulation of the cochlea using high density thin-film arrays.
Hear Res. 2012 May;287(1-2):30-42. doi: 10.1016/j.heares.2012.04.004. Epub 2012 Apr 16.
10
An overview of cochlear implant electrode array designs.
Hear Res. 2017 Dec;356:93-103. doi: 10.1016/j.heares.2017.10.005. Epub 2017 Oct 18.

引用本文的文献

1
Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.
Adv Healthc Mater. 2025 Apr;14(10):e2403235. doi: 10.1002/adhm.202403235. Epub 2024 Dec 31.
2
Thin-film implants for bioelectronic medicine.
MRS Bull. 2024;49(10):1045-1058. doi: 10.1557/s43577-024-00786-7. Epub 2024 Sep 26.
5
Magnetic stimulation allows focal activation of the mouse cochlea.
Elife. 2022 May 24;11:e76682. doi: 10.7554/eLife.76682.
6
Effects of different electrodes used in bone-guided extracochlear implants on electrical stimulation of auditory nerves in guinea pigs.
Tzu Chi Med J. 2020 Jul 13;33(1):42-48. doi: 10.4103/tcmj.tcmj_46_20. eCollection 2021 Jan-Mar.
7
A New Approach for Noise Suppression in Cochlear Implants: A Single-Channel Noise Reduction Algorithm.
Front Neurosci. 2020 Apr 21;14:301. doi: 10.3389/fnins.2020.00301. eCollection 2020.
8
Development and Clinical Introduction of the Nurotron Cochlear Implant Electrode Array.
J Int Adv Otol. 2018 Dec;14(3):392-400. doi: 10.5152/iao.2018.6285.

本文引用的文献

1
Electron-beam lithography for polymer bioMEMS with submicron features.
Microsyst Nanoeng. 2016 Nov 7;2:16053. doi: 10.1038/micronano.2016.53. eCollection 2016.
2
An overview of cochlear implant electrode array designs.
Hear Res. 2017 Dec;356:93-103. doi: 10.1016/j.heares.2017.10.005. Epub 2017 Oct 18.
3
Challenges in Improving Cochlear Implant Performance and Accessibility.
IEEE Trans Biomed Eng. 2017 Aug;64(8):1662-1664. doi: 10.1109/TBME.2017.2718939. Epub 2017 Jun 22.
4
Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies.
J Neural Eng. 2016 Dec;13(6):061003. doi: 10.1088/1741-2560/13/6/061003. Epub 2016 Oct 20.
5
Highly Flexible Silicone Coated Neural Array for Intracochlear Electrical Stimulation.
Biomed Res Int. 2015;2015:109702. doi: 10.1155/2015/109702. Epub 2015 Jul 5.
6
Development and evaluation of the Nurotron 26-electrode cochlear implant system.
Hear Res. 2015 Apr;322:188-99. doi: 10.1016/j.heares.2014.09.013. Epub 2014 Oct 2.
7
A polymer-based multichannel cochlear electrode array.
Otol Neurotol. 2014 Aug;35(7):1179-86. doi: 10.1097/MAO.0000000000000292.
9
Spatial channel interactions in cochlear implants.
J Neural Eng. 2011 Aug;8(4):046029. doi: 10.1088/1741-2560/8/4/046029. Epub 2011 Jul 13.
10
Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals.
J Neurosci Methods. 2011 Feb 15;195(2):176-84. doi: 10.1016/j.jneumeth.2010.12.005. Epub 2010 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验