Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States.
Trussell Technologies, Inc., 1939 Harrison St., Suite 600, Oakland, CA 94612, United States.
Water Res. 2018 Oct 15;143:579-588. doi: 10.1016/j.watres.2018.05.050. Epub 2018 May 31.
Treatment of fully nitrified municipal wastewater effluents with chlorine followed by chloramines (i.e., sequential chlorine disinfection) upstream of advanced treatment trains can contribute pathogen inactivation credits for potable reuse while leaving a chloramine residual to control biofouling on membrane units in the advanced treatment train. However, free chlorine exposures must be optimized to maximize pathogen inactivation while minimizing the formation of disinfection byproducts (DBPs) that are challenging to remove in the advanced treatment train. Using a pilot-scale disinfection contactor receiving fully-nitrified, tertiary municipal wastewater effluent, this study found that a 3 mg × min/L free chlorine CT (i.e., the product of the chlorine residual "C" and the contact time "T") followed by a 140 mg × min/L chloramine CT could reliably achieve 5-log inactivation of MS2 bacteriophage and reduce median total coliform concentrations below 2.2 MPN/100 mL. Free chlorine disinfection was equally effective when chlorine was dosed to exceed the breakpoint for 1 mg/L of ammonia as N. At this free chlorine exposure, regulated trihalomethane (THM) and haloacetic acid (HAA) formation remained below their Maximum Contaminant Levels (MCLs), but NDMA concentrations of ∼30 ng/L were above the 10 ng/L California Notification Level. Increasing the free chlorine exposure to ∼30 mg × min/L increased THM and HAA formation, with regulated THMs approaching or exceeding the MCL. Although this free chlorine exposure prevented NDMA formation during chloramination, the ∼10 ng/L background NDMA formation in the tertiary effluent remained. Increasing the free chlorine exposure also increased the formation of unregulated halogenated DBP classes that may be significant contributors to the DBP-associated toxicity of the disinfected wastewater. The results indicate that sequential chlorination can be used to optimize the benefits of free chlorine (virus and NDMA control) and chloramine disinfection (THM, HAA, and coliform control).
采用氯消毒-氯胺消毒(即序贯氯消毒)工艺对深度处理工艺前完全硝化的城市污水进行处理,可以为饮用水回用提供病原体灭活效果,同时在深度处理工艺的膜组件上保留氯胺残余以控制生物结垢。然而,为了在最大限度地灭活病原体的同时,最小化形成难以在深度处理工艺中去除的消毒副产物(DBP),必须优化自由氯暴露量。本研究采用中试规模的消毒接触器处理完全硝化的三级城市污水,结果发现,采用 3 mg×min/L 的自由氯 CT(即余氯“C”与接触时间“T”的乘积),随后采用 140 mg×min/L 的氯胺 CT,可以可靠地实现对 MS2 噬菌体 5 对数的灭活,并将总大肠菌群的中位数浓度降低至 2.2 MPN/100 mL 以下。当氯的投加量超过氨氮 1 mg/L 的断点时,自由氯消毒同样有效。在此自由氯暴露水平下,受管制的三卤甲烷(THM)和卤乙酸(HAA)的生成仍低于其最大污染物水平(MCL),但 30 ng/L 左右的 NDMA 浓度高于加利福尼亚州 10 ng/L 的通知水平。将自由氯暴露量增加到约 30 mg×min/L 会增加 THM 和 HAA 的生成,受管制的 THM 接近或超过 MCL。尽管在氯胺消毒过程中这种自由氯暴露可以防止 NDMA 的形成,但在三级出水仍存在约 10 ng/L 的背景 NDMA 生成。增加自由氯暴露量还会增加不受管制的卤代 DBP 类别的形成,这些 DBP 可能是消毒废水相关毒性的重要贡献者。研究结果表明,序贯氯化可用于优化自由氯(病毒和 NDMA 控制)和氯胺消毒(THM、HAA 和大肠菌群控制)的效益。