Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.
J Chem Phys. 2018 Jul 21;149(3):034104. doi: 10.1063/1.5027114.
Exploiting locality in the electron correlation reduces the computational cost for solving the Coupled-Cluster (CC) equations. This is important for making CC theory applicable to routine computational chemistry applications where it promises to deliver results of "gold-standard" quality. Recently, we have proposed a series of CC formulations in the domain-based local pair-natural orbital framework [DLPNO-coupled-cluster with singles and doubles (CCSD) and DLPNO-coupled-cluster singles and doubles with perturbative triples] which are designed to reproduce approximately 99.9% of the canonical correlation energy. In our previous work, the DLPNO-CCSD method has been extended to the high-spin open-shell reference and shown to possess comparable accuracy to the closed-shell counterpart [M. Saitow et al., J. Chem. Phys. 146, 164105 (2017)]. The so-called Λ-equations have been formulated in the DLPNO framework for the closed-shell species as an exact derivative of the DLPNO-CCSD Lagrangian with respect to the PNO-based cluster amplitudes [D. Datta et al., J. Chem. Phys. 145, 114101 (2016)]. In this paper, we extend the DLPNO-based Lagrangian scheme to the high-spin open-shell reference cases, thus enabling the accurate computation of the electron- and spin-densities for large open-shell species. We apply this newly developed approach to various first-order electronic and magnetic properties such as isotropic and anisotropic components in the hyperfine coupling interactions and the electric field gradient. We demonstrate that the DLPNO-CCSD results converge toward the respective canonical CC density and also that the DLPNO-CCSD-based properties are more accurate than the conventional density functional theory (DFT) results in real-life applications. The additional computational cost is not more than one energy evaluation in the DLPNO-CCSD framework.
利用电子相关中的局域性可以降低求解耦合簇(CC)方程的计算成本。这对于使 CC 理论适用于常规计算化学应用非常重要,因为它有望提供“黄金标准”质量的结果。最近,我们在基于域的局域对自然轨道框架[DLPNO-单双激发耦合簇(CCSD)和 DLPNO-单双激发耦合簇与微扰三激发]中提出了一系列 CC 公式,旨在近似再现 99.9%的典型相关能量。在我们之前的工作中,DLPNO-CCSD 方法已扩展至高自旋开壳参考,并被证明具有与闭壳对应物相当的精度[M. Saitow 等人,J. Chem. Phys. 146, 164105 (2017)]。对于闭壳物种,已经在 DLPNO 框架中为 Λ 方程制定了公式,作为 DLPNO-CCSD 拉格朗日相对于基于 PNO 的聚类振幅的精确导数[D. Datta 等人,J. Chem. Phys. 145, 114101 (2016)]。在本文中,我们将基于 DLPNO 的拉格朗日方案扩展到高自旋开壳参考情况,从而能够准确计算大的开壳物种的电子和自旋密度。我们将这种新开发的方法应用于各种一阶电子和磁性质,例如超精细耦合相互作用和电场梯度中的各向同性和各向异性分量。我们证明,DLPNO-CCSD 结果收敛到相应的典型 CC 密度,并且基于 DLPNO-CCSD 的性质在实际应用中比传统密度泛函理论(DFT)结果更准确。在 DLPNO-CCSD 框架中,额外的计算成本不超过一次能量评估。