Suppr超能文献

在聚类数据环境中估计由于交互作用引起的相对超额风险。

Estimating the Relative Excess Risk Due to Interaction in Clustered-Data Settings.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

出版信息

Am J Epidemiol. 2018 Nov 1;187(11):2470-2480. doi: 10.1093/aje/kwy154.

Abstract

The risk difference scale is often of primary interest when evaluating public health impacts of interventions on binary outcomes. However, few investigators report findings in terms of additive interaction, probably because the models typically used for binary outcomes implicitly measure interaction on the multiplicative scale. One measure with which to assess additive interaction from multiplicative models is the relative excess risk due to interaction (RERI). The RERI measure has been applied in many contexts, but one limitation of previous approaches is that clustering in data has rarely been considered. We evaluated the RERI metric for the setting of clustered data using both population-averaged and cluster-conditional models. In simulation studies, we found that estimation and inference for the RERI using population-averaged models was straightforward. However, frequentist implementations of cluster-conditional models including random intercepts often failed to converge or produced degenerate variance estimates. We developed a Bayesian implementation of log binomial random-intercept models, which represents an attractive alternative for estimating the RERI in cluster-conditional models. We applied the methods to an observational study of adverse birth outcomes in mothers with human immunodeficiency virus, in which mothers were clustered within clinical research sites.

摘要

当评估干预措施对二分类结局的公共卫生影响时,风险差尺度通常是主要关注点。然而,很少有研究人员用加性交互作用来报告研究结果,这可能是因为用于二分类结局的模型通常隐含地在乘法尺度上测量交互作用。从乘法模型评估加性交互作用的一个度量指标是交互归因的超额相对风险(RERI)。RERI 度量指标已在许多情况下得到应用,但之前方法的一个局限性是,数据中的聚类很少被考虑到。我们使用人群平均模型和聚类条件模型来评估聚类数据的 RERI 指标。在模拟研究中,我们发现使用人群平均模型估计和推断 RERI 是很直接的。然而,包括随机截距在内的聚类条件模型的经典推断方法常常无法收敛或产生退化的方差估计。我们开发了一种对数二项式随机截距模型的贝叶斯实现,这为在聚类条件模型中估计 RERI 提供了一个有吸引力的替代方案。我们将该方法应用于一项在感染人类免疫缺陷病毒的母亲中观察到的不良出生结局的研究,其中母亲在临床研究地点内进行聚类。

相似文献

10
Test for additive interaction in proportional hazards models.比例风险模型中相加交互作用的检验。
Ann Epidemiol. 2007 Mar;17(3):227-36. doi: 10.1016/j.annepidem.2006.10.009.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验