Suppr超能文献

实时急性肾损伤:预测、警报和临床决策支持。

Acute Kidney Injury in Real Time: Prediction, Alerts, and Clinical Decision Support.

机构信息

Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA.

Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

Nephron. 2018;140(2):116-119. doi: 10.1159/000492064. Epub 2018 Aug 2.

Abstract

Broad adoption of electronic health record (EHR) systems has facilitated acute kidney injury (AKI) research in 2 ways. First, the detection of AKI based on changes in serum creatinine has largely replaced the sensitive but nonspecific administrative coding of AKI that predominated in earlier studies. Second, the ability to implement real-time AKI interventions such as alerts and best-practice advisories has emerged as a promising tool to fight against the harmful sequela of AKI, which include short-term adverse outcomes as well as progression to chronic kidney disease, dialysis, and death. In this review, we discuss the current state-of-the-art in EHR-based tools to predict imminent AKI, alert to the presence of AKI, and modify provider behaviors in the presence of AKI.

摘要

电子健康记录 (EHR) 系统的广泛采用在以下两个方面促进了急性肾损伤 (AKI) 的研究。首先,基于血清肌酐变化的 AKI 检测在很大程度上取代了早期研究中占主导地位的敏感但非特异性的 AKI 行政编码。其次,实施实时 AKI 干预措施(如警报和最佳实践建议)的能力已成为对抗 AKI 有害后果的有前途的工具,这些后果包括短期不良后果以及进展为慢性肾脏病、透析和死亡。在这篇综述中,我们讨论了基于 EHR 的预测即将发生的 AKI、提醒 AKI 存在以及在存在 AKI 的情况下改变提供者行为的工具的最新进展。

相似文献

1
Acute Kidney Injury in Real Time: Prediction, Alerts, and Clinical Decision Support.
Nephron. 2018;140(2):116-119. doi: 10.1159/000492064. Epub 2018 Aug 2.
2
Electronic health records accurately predict renal replacement therapy in acute kidney injury.
BMC Nephrol. 2019 Jan 31;20(1):32. doi: 10.1186/s12882-019-1206-4.
3
eResearch in acute kidney injury: a primer for electronic health record research.
Nephrol Dial Transplant. 2019 Mar 1;34(3):401-407. doi: 10.1093/ndt/gfy052.
4
Impact of e-alert systems on the care of patients with acute kidney injury.
Best Pract Res Clin Anaesthesiol. 2017 Sep;31(3):353-359. doi: 10.1016/j.bpa.2017.08.003. Epub 2017 Aug 24.
5
A simple electronic alert for acute kidney injury.
Ann Clin Biochem. 2015 Mar;52(Pt 2):206-12. doi: 10.1177/0004563214534832. Epub 2014 Apr 24.
6
Impact of integrated clinical decision support systems in the management of pediatric acute kidney injury: a pilot study.
Pediatr Res. 2021 Apr;89(5):1164-1170. doi: 10.1038/s41390-020-1046-8. Epub 2020 Jul 3.
8
A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital.
Nephrol Dial Transplant. 2014 Oct;29(10):1888-93. doi: 10.1093/ndt/gfu082. Epub 2014 Apr 16.
9
Value of electronic alerts for acute kidney injury in high-risk wards: a pilot randomized controlled trial.
Int Urol Nephrol. 2018 Aug;50(8):1483-1488. doi: 10.1007/s11255-018-1836-7. Epub 2018 Mar 19.

引用本文的文献

1
Predicting acute kidney injury in trauma using an extreme gradient boosting model.
Clin Kidney J. 2025 Jan 13;18(4):sfaf002. doi: 10.1093/ckj/sfaf002. eCollection 2025 Apr.
3
Development and validation of a race-agnostic computable phenotype for kidney health in adult hospitalized patients.
PLoS One. 2024 Apr 23;19(4):e0299332. doi: 10.1371/journal.pone.0299332. eCollection 2024.
4
Prediction of successful weaning from renal replacement therapy in critically ill patients based on machine learning.
Ren Fail. 2024 Dec;46(1):2319329. doi: 10.1080/0886022X.2024.2319329. Epub 2024 Feb 28.
5
Impact of an Electronic Alert in Combination with a Care Bundle on the Outcomes of Acute Kidney Injury.
Diagnostics (Basel). 2022 Dec 10;12(12):3121. doi: 10.3390/diagnostics12123121.
8
Stakeholder Perspectives on an Inpatient Hypoglycemia Informatics Alert: Mixed Methods Study.
JMIR Hum Factors. 2021 Nov 26;8(4):e31214. doi: 10.2196/31214.
10
Rapid Multianalyte Microfluidic Homogeneous Immunoassay on Electrokinetically Driven Beads.
Biosensors (Basel). 2020 Dec 21;10(12):212. doi: 10.3390/bios10120212.

本文引用的文献

1
Identification of Patients Expected to Benefit from Electronic Alerts for Acute Kidney Injury.
Clin J Am Soc Nephrol. 2018 Jun 7;13(6):842-849. doi: 10.2215/CJN.13351217. Epub 2018 Mar 29.
2
Quality measures in acute kidney injury.
Curr Opin Nephrol Hypertens. 2018 Mar;27(2):130-135. doi: 10.1097/MNH.0000000000000388.
4
A risk prediction score for acute kidney injury in the intensive care unit.
Nephrol Dial Transplant. 2017 May 1;32(5):814-822. doi: 10.1093/ndt/gfx026.
5
Development of a Multicenter Ward-Based AKI Prediction Model.
Clin J Am Soc Nephrol. 2016 Nov 7;11(11):1935-1943. doi: 10.2215/CJN.00280116. Epub 2016 Sep 15.
6
Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study.
Intensive Care Med. 2015 Aug;41(8):1411-23. doi: 10.1007/s00134-015-3934-7. Epub 2015 Jul 11.
7
Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial.
Lancet. 2015 May 16;385(9981):1966-74. doi: 10.1016/S0140-6736(15)60266-5. Epub 2015 Feb 26.
8
Performance and limitations of administrative data in the identification of AKI.
Clin J Am Soc Nephrol. 2014 Apr;9(4):682-9. doi: 10.2215/CJN.07650713. Epub 2014 Jan 23.
9
Electronic alerts for acute kidney injury.
Curr Opin Nephrol Hypertens. 2013 Nov;22(6):637-42. doi: 10.1097/MNH.0b013e328365ae84.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验