The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, 201418, China.
EPFL, 2002, Neuchâtel, Switzerland.
Biomed Eng Online. 2018 Aug 6;17(1):107. doi: 10.1186/s12938-018-0539-8.
For the functional control of prosthetic hand, it is insufficient to obtain only the motion pattern information. As far as practicality is concerned, the control of the prosthetic hand force is indispensable. The application value of prosthetic hand will be greatly improved if the stable grip of prosthetic hand can be achieved. To address this problem, in this study, a bio-signal control method for grasping control of a prosthetic hand is proposed to improve patient's sense of using prosthetic hand and the thus improving the quality of life.
A MYO gesture control armband is used to collect the surface electromyographic (sEMG) signals from the upper limb. The overlapping sliding window scheme are applied for data segmentation and the correlated features are extracted from each segmented data. Principal component analysis (PCA) methods are then deployed for dimension reduction. Deep neural network is used to generate sEMG-force regression model for force prediction at different levels. The predicted force values are input to a fuzzy controller for the grasping control of a prosthetic hand. A vibration feedback device is used to feed grasping force value back to patient's arm to improve patient's sense of using prosthetic hand and realize accurate grasping. To test the effectiveness of the scheme, 15 able-bodied subjects participated in the experiments.
The classification results indicated that 8-channel sEMG applying all four time-domain features, with PCA reduction from 32 to 8 dimensions results in the highest classification accuracy. Based on the experimental results from 15 participants, the average recognition rate is over 95%. On the other hand, from the statistical results of standard deviation, the between-subject variations ranges from 3.58 to 1.25%, proving that the robustness and stability of the proposed approach.
The method proposed hereto control grasping power through the patient's own sEMG signal, which achieves a high recognition rate to improve the success rate of grip and increases the sense of operation and also brings the gospel for upper extremity amputation patients.
对于假肢手的功能控制,仅获取运动模式信息是不够的。就实用性而言,假肢手的力控制是不可或缺的。如果能够实现假肢手的稳定握持,将大大提高假肢手的应用价值。为了解决这个问题,本研究提出了一种基于生物信号的假肢手抓握控制方法,以提高患者使用假肢手的感觉,从而提高生活质量。
使用 MYO 手势控制臂带采集上肢表面肌电(sEMG)信号。采用重叠滑动窗口方案对数据进行分段,并从每个分段数据中提取相关特征。然后应用主成分分析(PCA)方法进行降维。深度神经网络用于生成 sEMG-力回归模型,以预测不同水平的力。预测的力值输入到模糊控制器中,以实现假肢手的抓握控制。振动反馈装置用于将抓握力值反馈给患者手臂,以提高患者使用假肢手的感觉,实现准确抓握。为了测试方案的有效性,15 名健康受试者参与了实验。
分类结果表明,8 通道 sEMG 应用所有四个时域特征,采用 PCA 从 32 维降维至 8 维,可获得最高的分类精度。基于 15 名参与者的实验结果,平均识别率超过 95%。另一方面,从标准差的统计结果来看,受试者间的变化范围为 3.58%至 1.25%,证明了所提出方法的稳健性和稳定性。
本研究提出了一种通过患者自身 sEMG 信号控制抓握力的方法,实现了高识别率,提高了抓握成功率,增加了操作感,也为上肢截肢患者带来了福音。