文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于成像的纳米医学药物递送:临床研究综述。

Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies.

机构信息

School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.

Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.

出版信息

Mol Imaging Biol. 2018 Oct;20(5):683-695. doi: 10.1007/s11307-018-1255-2.


DOI:10.1007/s11307-018-1255-2
PMID:30084044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6139024/
Abstract

Imaging plays a key role in the preclinical evaluation of nanomedicine-based drug delivery systems and it has provided important insights into their mechanism of action and therapeutic effect. Its role in supporting the clinical development of nanomedicine products, however, has been less explored. In this review, we summarize clinical studies in which imaging has provided valuable information on the pharmacokinetics, biodistribution, and target site accumulation of nanomedicine-based drug delivery systems. Importantly, these studies provide convincing evidence on the uptake of nanomedicines in tumors, confirming that the enhanced permeability and retention (EPR) effect is a real phenomenon in patients, albeit with fairly high levels of inter- and intraindividual variability. It is gradually becoming clear that imaging is critically important to help address this high heterogeneity. In support of this notion, a decent correlation between nanomedicine uptake in tumors and antitumor efficacy has recently been obtained in two independent studies in patients, exemplifying that image-guided drug delivery can help to pave the way towards individualized and improved nanomedicine therapies.

摘要

成像在基于纳米医学的药物递送系统的临床前评估中起着关键作用,它为其作用机制和治疗效果提供了重要的见解。然而,它在支持纳米医学产品的临床开发中的作用还没有得到充分的探索。在这篇综述中,我们总结了成像在提供关于基于纳米医学的药物递送系统的药代动力学、生物分布和靶部位积累的有价值信息的临床研究。重要的是,这些研究提供了令人信服的证据,证明纳米药物在肿瘤中的摄取是一种真实的现象,确认增强的通透性和保留(EPR)效应在患者中是真实存在的,尽管存在相当高的个体间和个体内变异性。成像对于帮助解决这种高度异质性至关重要,这一点逐渐变得清晰起来。支持这一观点的是,最近在两项独立的患者研究中,在肿瘤中摄取纳米药物与抗肿瘤疗效之间获得了相当好的相关性,这说明了图像引导的药物输送可以帮助为个体化和改进的纳米医学治疗铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/ceb4f4df45c9/11307_2018_1255_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/d9a79df81997/11307_2018_1255_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/841be2504dfa/11307_2018_1255_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/0abbe95e4055/11307_2018_1255_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/ceb4f4df45c9/11307_2018_1255_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/d9a79df81997/11307_2018_1255_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/841be2504dfa/11307_2018_1255_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/0abbe95e4055/11307_2018_1255_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ea/6153680/ceb4f4df45c9/11307_2018_1255_Fig4_HTML.jpg

相似文献

[1]
Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies.

Mol Imaging Biol. 2018-10

[2]
Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine.

Adv Drug Deliv Rev. 2019-6-3

[3]
Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.

Biomaterials. 2021-8

[4]
Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[5]
Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?

Nanomedicine (Lond). 2023-1

[6]
High-resolution 3D visualization of nanomedicine distribution in tumors.

Theranostics. 2020

[7]
Tumor targeting via EPR: Strategies to enhance patient responses.

Adv Drug Deliv Rev. 2018-7-19

[8]
Image-guided drug delivery: preclinical applications and clinical translation.

Expert Opin Drug Deliv. 2015-8

[9]
Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.

Acta Biomater. 2021-5

[10]
What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.

ACS Nano. 2020-10-27

引用本文的文献

[1]
Advances in multimodal imaging techniques in nanomedicine: enhancing drug delivery precision.

RSC Adv. 2025-7-30

[2]
Analyzing Molecular Determinants of Nanodrugs' Cytotoxic Effects.

Int J Mol Sci. 2025-7-11

[3]
Construction of a whole-brain panorama for glioma vasculature reveals tumor heterogeneity and blood-brain barrier disruption.

Sci Adv. 2025-7-25

[4]
Emerging nanotechnologies and their role in early ovarian cancer detection, diagnosis and interventions.

J Ovarian Res. 2025-5-7

[5]
Nano-drug delivery systems integrated with low radiation doses for enhanced therapeutic efficacy in cancer treatment.

World J Clin Cases. 2025-4-6

[6]
Optical coherence tomography for noninvasive monitoring of drug delivery.

Adv Drug Deliv Rev. 2025-5

[7]
Nanotechnology-driven EGCG: bridging antioxidant and therapeutic roles in metabolic and cancer pathways.

Nanomedicine (Lond). 2025-3

[8]
Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): an updated analysis and future perspective.

BMJ Oncol. 2025-1-9

[9]
Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring.

Nano Converg. 2024-12-11

[10]
MRI detection of free-contrast agent nanoparticles.

Magn Reson Med. 2025-2

本文引用的文献

[1]
Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore.

Dalton Trans. 2018-7-17

[2]
Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery.

Molecules. 2018-1-30

[3]
Biodistribution and radiation dosimetry of [Cu]copper dichloride: first-in-human study in healthy volunteers.

EJNMMI Res. 2017-12-12

[4]
Clinical trial protocol for TARDOX: a phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours.

J Ther Ultrasound. 2017-11-2

[5]
Theranostics Using Antibodies and Antibody-Related Therapeutics.

J Nucl Med. 2017-9

[6]
Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection.

J Pharm Sci. 2017-6-29

[7]
[F]-Fluorinated Carboplatin and [In]-Liposome for Image-Guided Drug Delivery.

Int J Mol Sci. 2017-5-18

[8]
Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer.

Clin Cancer Res. 2017-3-15

[9]
Correlation between Ferumoxytol Uptake in Tumor Lesions by MRI and Response to Nanoliposomal Irinotecan in Patients with Advanced Solid Tumors: A Pilot Study.

Clin Cancer Res. 2017-2-3

[10]
Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines.

ACS Nano. 2016-10-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索