Suppr超能文献

中性粒细胞和外周血单个核细胞对脓毒症炎症反应的网络分析。

Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells.

机构信息

Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, Iran.

Adelaide Medical School, The University of Adelaide, Adelaide, Australia.

出版信息

PLoS One. 2018 Aug 7;13(8):e0201674. doi: 10.1371/journal.pone.0201674. eCollection 2018.

Abstract

Sepsis is a life-threatening syndrome causing thousands of deaths yearly worldwide. Sepsis is a result of infection and could lead to systemic inflammatory responses and organ failures. Additionally, blood cells, as the main cells in the immune systems, could be also affected by sepsis. Here, we have used different network analysis approaches, including Weighted Gene Co-expression Network Analysis (WGCNA), Protein-Protein Interaction (PPI), and gene regulatory network, to dissect system-level response to sepsis by the main white blood cells. Gene expression profiles of Neutrophils (NTs), Dendritic Cells (DCs), and Peripheral Blood Mononuclear Cells (PBMCs) that were exposed to septic plasma were obtained and analyzed using bioinformatics approaches. Individual gene expression matrices and the list of differentially expressed genes (DEGs) were prepared and used to construct several networks. Consequently, key regulatory modules and hub genes were detected through network analysis and annotated through ontology analysis extracted from DAVID database. Our results showed that septic plasma affected the regulatory networks in NTs, PBMCs more than the network in DCs. Gene ontology of DEGs revealed that signal transduction and immune cells responses are the most important biological processes affected by sepsis. On the other hand, network analysis detected modules and hub genes in each cell types. It was found that pathways involved in immune cells, signal transduction, and apoptotic processes are among the most affected pathways in the responses to sepsis. Altogether, we have found several hub genes including ADORA3, CD83 CDKN1A, FFAR2, GNAQ, IL1B, LTB, MAPK14, SAMD9L, SOCS1, and STAT1, which might specifically respond to sepsis infection. In conclusion, our results uncovered the system-level responses of the main white blood cells to sepsis and identified several hub genes with potential applications for therapeutic and diagnostic purposes.

摘要

脓毒症是一种危及生命的综合征,每年在全球导致数千人死亡。脓毒症是感染的结果,可导致全身炎症反应和器官衰竭。此外,作为免疫系统的主要细胞,血细胞也可能受到脓毒症的影响。在这里,我们使用了不同的网络分析方法,包括加权基因共表达网络分析(WGCNA)、蛋白质-蛋白质相互作用(PPI)和基因调控网络,来剖析主要白细胞对脓毒症的系统水平反应。从暴露于脓毒症血浆的中性粒细胞(NTs)、树突状细胞(DCs)和外周血单核细胞(PBMCs)中获得基因表达谱,并使用生物信息学方法进行分析。准备了单个基因表达矩阵和差异表达基因(DEGs)列表,并用于构建几个网络。随后,通过网络分析检测关键调控模块和枢纽基因,并通过 DAVID 数据库提取的本体分析进行注释。我们的结果表明,脓毒症血浆对 NTs、PBMCs 的调控网络的影响比对 DCs 的影响更大。DEGs 的基因本体论揭示了信号转导和免疫细胞反应是受脓毒症影响最大的最重要的生物学过程。另一方面,网络分析检测到每个细胞类型的模块和枢纽基因。发现参与免疫细胞、信号转导和凋亡过程的途径是对脓毒症反应中受影响最大的途径之一。总之,我们发现了几个枢纽基因,包括 ADORA3、CD83、CDKN1A、FFAR2、GNAQ、IL1B、LTB、MAPK14、SAMD9L、SOCS1 和 STAT1,它们可能专门对脓毒症感染作出反应。总之,我们的研究结果揭示了主要白细胞对脓毒症的系统水平反应,并确定了几个具有潜在治疗和诊断应用的枢纽基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e59/6080784/8cddd649471d/pone.0201674.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验