UPR9080 CNRS, Institut de Biologie Physico-Chimique, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France.
Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris, France.
Biophys J. 2018 Aug 21;115(4):605-615. doi: 10.1016/j.bpj.2018.06.030. Epub 2018 Jul 21.
In some fungi, a premeiotic process known as repeat-induced point mutation (RIP) can accurately identify and mutate nearly all gene-sized DNA repeats present in the haploid germline nuclei. Studies in Neurospora crassa have suggested that RIP detects sequence homology directly between intact DNA double helices, without strand separation and without the participation of RecA-like proteins. Those studies used the aggregated number of RIP mutations as a simple quantitative measure of RIP activity. Additional structural information about homologous DNA-DNA pairing during RIP can be extracted by analyzing spatial distributions of RIP mutations converted into profiles of partitioned RIP propensity (PRP). Further analysis shows that PRP is strongly affected by the topological configuration and the relative positioning of the participating DNA segments. Most notably, pairs of closely positioned repeats produce very distinct PRP profiles depending on whether these repeats are present in the direct or the inverted orientation. Such an effect can be attributed to a topology-dependent redistribution of the supercoiling stress created by the predicted limited untwisting of the DNA segments during pairing. This and other results raise a possibility that such pairing-induced fluctuations in DNA supercoiling can modulate the overall structure and properties of repetitive DNA. Such effects can be particularly strong in the context of long tandem-repeat arrays that are typically present in the pericentromeric and centromeric regions of chromosomes in many species of plants, fungi, and animals, including humans.
在一些真菌中,一种称为重复诱导点突变(RIP)的预减数分裂过程可以准确识别和突变存在于单倍体生殖核中的几乎所有基因大小的 DNA 重复序列。在粗糙脉孢菌中的研究表明,RIP 可以直接在完整的 DNA 双螺旋之间检测序列同源性,而无需链分离,也无需 RecA 样蛋白的参与。这些研究使用 RIP 突变的聚集数量作为 RIP 活性的简单定量衡量标准。通过分析转换为分区 RIP 倾向(PRP)分布的 RIP 突变的空间分布,可以提取有关 RIP 过程中同源 DNA-DNA 配对的其他结构信息。进一步的分析表明,PRP 强烈受到参与 DNA 片段的拓扑结构和相对定位的影响。最值得注意的是,紧密定位的重复序列产生非常不同的 PRP 分布,具体取决于这些重复序列是处于直接还是倒置取向。这种效应可以归因于由预测的 DNA 片段在配对过程中的有限解旋引起的超螺旋应力的拓扑依赖性再分配。这种和其他结果提出了一种可能性,即这种配对诱导的 DNA 超螺旋波动可以调节重复 DNA 的整体结构和性质。这种效应在许多植物、真菌和动物物种的染色体着丝粒和着丝粒区域中通常存在的长串联重复阵列的情况下尤为强烈,包括人类。