Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
Mol Biol Cell. 2018 Oct 1;29(20):2378-2385. doi: 10.1091/mbc.E18-05-0319. Epub 2018 Aug 9.
Increased tissue stiffness is a classic characteristic of solid tumors. One of the major contributing factors is increased density of collagen fibers in the extracellular matrix (ECM). Here, we investigate how cancer cells biomechanically interact with and respond to the stiffness of the ECM. Probing the adaptability of cancer cells to altered ECM stiffness using optical tweezers-based microrheology and deformability cytometry, we find that only malignant cancer cells have the ability to adjust to collagen matrices of different densities. Employing microrheology on the biologically relevant spheroid invasion assay, we can furthermore demonstrate that, even within a cluster of cells of similar origin, there are differences in the intracellular biomechanical properties dependent on the cells' invasive behavior. We reveal a consistent increase of viscosity in cancer cells leading the invasion into the collagen matrices in comparison with cancer cells following in the stalk or remaining in the center of the spheroid. We hypothesize that this differential viscoelasticity might facilitate spheroid tip invasion through a dense matrix. These findings highlight the importance of the biomechanical interplay between cells and their microenvironment for tumor progression.
组织硬度增加是实体瘤的一个典型特征。其中一个主要的促成因素是细胞外基质(ECM)中胶原纤维密度的增加。在这里,我们研究了癌细胞如何与 ECM 的硬度进行生物力学相互作用和响应。我们使用基于光学镊子的微流变学和变形细胞术来探测癌细胞对 ECM 硬度变化的适应性,发现只有恶性癌细胞才有能力适应不同密度的胶原基质。在生物学相关的球体侵袭测定中使用微流变学,我们还可以证明,即使在具有相似起源的细胞簇内,细胞内生物力学特性也存在差异,这取决于细胞的侵袭行为。我们发现,与在球体中心或跟随在球体尾部的癌细胞相比,在进入胶原基质时,癌细胞的粘度会持续增加。我们假设这种差异粘弹性可能有助于球体尖端通过致密基质进行侵袭。这些发现强调了细胞与其微环境之间的生物力学相互作用对于肿瘤进展的重要性。