Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, Ohio, USA.
Biomedical Engineering Institute, College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China.
CPT Pharmacometrics Syst Pharmacol. 2018 Aug;7(8):499-506. doi: 10.1002/psp4.12294. Epub 2018 Aug 9.
The US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) is an important source for detecting adverse drug event (ADE) signals. In this article, we propose a three-component mixture model (3CMM) for FAERS signal detection. In 3CMM, a drug-ADE pair is assumed to have either a zero relative risk (RR), or a background RR (mean RR = 1), or an increased RR (mean RR >1). By clearly defining the second component (mean RR = 1) as the null distribution, 3CMM estimates local false discovery rates (FDRs) for ADE signals under the empirical Bayes framework. Compared with existing approaches, the local FDR's top signals have noninferior or better sensitivities to detect true signals in both FAERS analysis and simulation studies. Additionally, we identify that the top signals of different approaches have different patterns, and they are complementary to each other.
美国食品和药物管理局(FDA)不良事件报告系统(FAERS)是检测药物不良事件(ADE)信号的重要来源。在本文中,我们提出了一种用于 FAERS 信号检测的三组件混合模型(3CMM)。在 3CMM 中,假定药物-ADE 对要么具有零相对风险(RR),要么具有背景 RR(均值 RR=1),要么具有增加的 RR(均值 RR>1)。通过将第二个组件(均值 RR=1)明确定义为零分布,3CMM 在经验贝叶斯框架下估计 ADE 信号的局部 FDR。与现有方法相比,在 FAERS 分析和模拟研究中,局部 FDR 的顶级信号对检测真实信号具有非劣效或更好的灵敏度。此外,我们还发现,不同方法的顶级信号具有不同的模式,它们是互补的。