Suppr超能文献

一种用于基因组评估的近似贝叶斯显著性检验。

An approximate Bayesian significance test for genomic evaluations.

作者信息

Wittenburg Dörte, Liebscher Volkmar

机构信息

Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.

Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, D-17489, Greifswald, Germany.

出版信息

Biom J. 2018 Nov;60(6):1096-1109. doi: 10.1002/bimj.201700219. Epub 2018 Aug 12.

Abstract

Genomic information can be used to study the genetic architecture of some trait. Not only the size of the genetic effect captured by molecular markers and their position on the genome but also the mode of inheritance, which might be additive or dominant, and the presence of interactions are interesting parameters. When searching for interacting loci, estimating the effect size and determining the significant marker pairs increases the computational burden in terms of speed and memory allocation dramatically. This study revisits a rapid Bayesian approach (fastbayes). As a novel contribution, a measure of evidence is derived to select markers with effect significantly different from zero. It is based on the credibility of the highest posterior density interval next to zero in a marginalized manner. This methodology is applied to simulated data resembling a dairy cattle population in order to verify the sensitivity of testing for a given range of type-I error levels. A real data application complements this study. Sensitivity and specificity of fastbayes were similar to a variational Bayesian method, and a further reduction of computing time could be achieved. More than 50% of the simulated causative variants were identified. The most complex model containing different kinds of genetic effects and their pairwise interactions yielded the best outcome over a range of type-I error levels. The validation study showed that fastbayes is a dual-purpose tool for genomic inferences - it is applicable to predict future outcome of not-yet phenotyped individuals with high precision as well as to estimate and test single-marker effects. Furthermore, it allows the estimation of billions of interaction effects.

摘要

基因组信息可用于研究某些性状的遗传结构。分子标记捕获的遗传效应大小及其在基因组上的位置,以及可能为加性或显性的遗传模式和相互作用的存在,都是有趣的参数。在寻找相互作用的基因座时,估计效应大小和确定显著的标记对会在速度和内存分配方面极大地增加计算负担。本研究重新审视了一种快速贝叶斯方法(fastbayes)。作为一项新的贡献,推导了一种证据度量,以选择效应显著非零的标记。它基于以边缘化方式靠近零的最高后验密度区间的可信度。该方法应用于类似于奶牛群体的模拟数据,以验证在给定的I型错误水平范围内测试的敏感性。一个实际数据应用补充了本研究。fastbayes的敏感性和特异性与变分贝叶斯方法相似,并且可以进一步减少计算时间。超过50%的模拟致病变异被识别出来。包含不同类型遗传效应及其成对相互作用的最复杂模型在一系列I型错误水平上产生了最佳结果。验证研究表明,fastbayes是一种用于基因组推断的两用工具——它适用于高精度预测尚未表型个体的未来结果,以及估计和测试单标记效应。此外,它还允许估计数十亿种相互作用效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa3/6282823/34e3bf7725e0/BIMJ-60-1096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验