College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211800 , China.
Institute of Drug R&D , Medical School of Nanjing University , Nanjing 210093 , China.
ACS Nano. 2018 Aug 28;12(8):8308-8322. doi: 10.1021/acsnano.8b03590. Epub 2018 Aug 15.
Hypoxia, and hypoxia inducible factor-1 (HIF-1), can induce tumor resistance to radiation therapy. To overcome hypoxia-induced radiation resistance, recent studies have described nanosystems to improve tumor oxygenation for immobilizing DNA damage and simultaneously initiate oxygen-dependent HIF-1α degradation. However, HIF-1α degradation is incomplete during tumor oxygenation treatment alone. Therefore, tumor oxygenation combined with residual HIF-1 functional inhibition is crucial to optimizing therapeutic outcomes of radiotherapy. Here, a reactive oxygen species (ROS) responsive nanoplatform is reported to successfully add up tumor oxygenation and HIF-1 functional inhibition. This ROS responsive nanoplatform, based on manganese dioxide (MnO) nanoparticles, delivers the HIF-1 inhibitor acriflavine and other hydrophilic cationic drugs to tumor tissues. After reacting with overexpressed hydrogen peroxide (HO) within tumor tissues, Mn and oxygen molecules are released for magnetic resonance imaging and tumor oxygenation, respectively. Cooperating with the HIF-1 functional inhibition, the expression of tumor invasion-related signaling molecules (VEGF, MMP-9) is obviously decreased to reduce the risk of metastasis. Furthermore, the nanoplatform could relieve T-cell exhaustion via downregulation of PD-L1, whose effects are similar to the checkpoint inhibitor PD-L1 antibody, and subsequently activates tumor-specific immune responses against abscopal tumors. These therapeutic benefits including increased X-ray-induced damage, downregulated resistance, and T-cell exhaustion related proteins expression achieved synergistically the optimal inhibition of tumor growth. Overall, this designed ROS responsive nanoplatform is of great potential in the sensitization of radiation for combating primary and metastatic tumors.
缺氧和缺氧诱导因子-1(HIF-1)可诱导肿瘤对放射治疗产生耐药性。为了克服缺氧诱导的放射抵抗,最近的研究描述了纳米系统,以改善肿瘤氧合作用,固定 DNA 损伤,并同时启动依赖氧的 HIF-1α降解。然而,在单独进行肿瘤氧合作用治疗时,HIF-1α降解并不完全。因此,肿瘤氧合作用与残留的 HIF-1 功能抑制相结合对于优化放射治疗的治疗效果至关重要。在这里,报道了一种活性氧(ROS)响应性纳米平台,成功地增加了肿瘤氧合作用和 HIF-1 功能抑制。这种基于二氧化锰(MnO)纳米粒子的 ROS 响应性纳米平台,将 HIF-1 抑制剂吖啶黄素和其他亲水性阳离子药物递送到肿瘤组织中。在与肿瘤组织中过表达的过氧化氢(HO)反应后,Mn 和氧分子分别用于磁共振成像和肿瘤氧合作用。与 HIF-1 功能抑制协同作用,肿瘤侵袭相关信号分子(VEGF、MMP-9)的表达明显降低,从而降低转移风险。此外,该纳米平台通过下调 PD-L1 来缓解 T 细胞衰竭,其作用类似于检查点抑制剂 PD-L1 抗体,随后激活针对远处肿瘤的肿瘤特异性免疫反应。这些治疗益处包括增加 X 射线诱导的损伤、下调耐药性和 T 细胞衰竭相关蛋白的表达,协同实现了肿瘤生长的最佳抑制。总体而言,这种设计的 ROS 响应性纳米平台在增强放射治疗对原发性和转移性肿瘤的敏感性方面具有很大的潜力。
iScience. 2024-12-14
Bioact Mater. 2024-7-2
MedComm (2020). 2024-7-20
Coord Chem Rev. 2024-2-1