Suppr超能文献

人工智能驱动的皮肤癌诊断增强:一种使用皮肤镜数据的两阶段投票集成方法。

AI-Driven Enhancement of Skin Cancer Diagnosis: A Two-Stage Voting Ensemble Approach Using Dermoscopic Data.

作者信息

Chiu Tsu-Man, Li Yun-Chang, Chi I-Chun, Tseng Ming-Hseng

机构信息

School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.

Department of Dermatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan.

出版信息

Cancers (Basel). 2025 Jan 3;17(1):137. doi: 10.3390/cancers17010137.

Abstract

BACKGROUND

Skin cancer is the most common cancer worldwide, with melanoma being the deadliest type, though it accounts for less than 5% of cases. Traditional skin cancer detection methods are effective but are often costly and time-consuming. Recent advances in artificial intelligence have improved skin cancer diagnosis by helping dermatologists identify suspicious lesions.

METHODS

The study used datasets from two ethnic groups, sourced from the ISIC platform and CSMU Hospital, to develop an AI diagnostic model. Eight pre-trained models, including convolutional neural networks and vision transformers, were fine-tuned. The three best-performing models were combined into an ensemble model, which underwent multiple random experiments to ensure stability. To improve diagnostic accuracy and reduce false negatives, a two-stage classification strategy was employed: a three-class model for initial classification, followed by a binary model for secondary prediction of benign cases.

RESULTS

In the ISIC dataset, the false negative rate for malignant lesions was significantly reduced, and the number of malignant cases misclassified as benign dropped from 124 to 45. In the CSMUH dataset, false negatives for malignant cases were completely eliminated, reducing the number of misclassified malignant cases to zero, resulting in a notable improvement in diagnostic precision and a reduction in the false negative rate.

CONCLUSIONS

Through the proposed method, the study demonstrated clear success in both datasets. First, a three-class AI model can assist doctors in distinguishing between melanoma patients who require urgent treatment, non-melanoma skin cancer patients who can be treated later, and benign cases that do not require intervention. Subsequently, a two-stage classification strategy effectively reduces false negatives in malignant lesions. These findings highlight the potential of AI technology in skin cancer diagnosis, particularly in resource-limited medical settings, where it could become a valuable clinical tool to improve diagnostic accuracy, reduce skin cancer mortality, and reduce healthcare costs.

摘要

背景

皮肤癌是全球最常见的癌症,黑色素瘤是最致命的类型,尽管其病例占比不到5%。传统的皮肤癌检测方法有效,但往往成本高昂且耗时。人工智能的最新进展通过帮助皮肤科医生识别可疑病变,改善了皮肤癌诊断。

方法

该研究使用了来自两个种族群体的数据集,这些数据集来源于国际皮肤影像协作组(ISIC)平台和重庆医科大学附属第一医院(CSMU Hospital),以开发一种人工智能诊断模型。对包括卷积神经网络和视觉Transformer在内的八个预训练模型进行了微调。将三个性能最佳的模型组合成一个集成模型,该模型进行了多次随机实验以确保稳定性。为了提高诊断准确性并减少假阴性,采用了两阶段分类策略:首先是用于初始分类的三类模型,然后是用于对良性病例进行二次预测的二元模型。

结果

在ISIC数据集中,恶性病变的假阴性率显著降低,被误诊为良性的恶性病例数量从124例降至45例。在CSMUH数据集中,恶性病例的假阴性被完全消除,将误诊的恶性病例数量降至零,从而显著提高了诊断精度并降低了假阴性率。

结论

通过所提出的方法,该研究在两个数据集中均取得了明显成功。首先,一个三类人工智能模型可以帮助医生区分需要紧急治疗的黑色素瘤患者、可以稍后治疗的非黑色素瘤皮肤癌患者以及不需要干预的良性病例。随后,两阶段分类策略有效地减少了恶性病变中的假阴性。这些发现突出了人工智能技术在皮肤癌诊断中的潜力,特别是在资源有限的医疗环境中,它可能成为提高诊断准确性、降低皮肤癌死亡率和降低医疗成本的有价值的临床工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859f/11720667/0551bbb382b7/cancers-17-00137-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验