Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae406.
The tendency for cell fate to be robust to most perturbations, yet sensitive to certain perturbations raises intriguing questions about the existence of a key path within the underlying molecular network that critically determines distinct cell fates. Reprogramming and trans-differentiation clearly show examples of cell fate change by regulating only a few or even a single molecular switch. However, it is still unknown how to identify such a switch, called a master regulator, and how cell fate is determined by its regulation. Here, we present CAESAR, a computational framework that can systematically identify master regulators and unravel the resulting canalizing kernel, a key substructure of interconnected feedbacks that is critical for cell fate determination. We demonstrate that CAESAR can successfully predict reprogramming factors for de-differentiation into mouse embryonic stem cells and trans-differentiation of hematopoietic stem cells, while unveiling the underlying essential mechanism through the canalizing kernel. CAESAR provides a system-level understanding of how complex molecular networks determine cell fates.
细胞命运对大多数干扰具有较强的稳定性,但对某些干扰却较为敏感,这一现象引发了人们的兴趣,促使人们去探索在潜在的分子网络中是否存在一个关键通路,该通路可以决定性地决定不同的细胞命运。重编程和转分化显然通过仅调节少数甚至单个分子开关就展示了细胞命运改变的例子。然而,目前尚不清楚如何识别这样的开关,即主调控因子,以及细胞命运如何通过其调节来确定。在这里,我们提出了 CAESAR,这是一个计算框架,可以系统地识别主调控因子,并揭示出对于细胞命运决定至关重要的关键子结构,即相互连接的反馈的 canalizing 核。我们证明 CAESAR 可以成功预测去分化为小鼠胚胎干细胞和造血干细胞的转分化的重编程因子,同时通过 canalizing 核揭示潜在的基本机制。CAESAR 提供了对复杂分子网络如何决定细胞命运的系统理解。