Suppr超能文献

使用AdaBoost算法对CT图像中的肺部支气管血管解剖结构进行自动分类。

Automated classification of lung bronchovascular anatomy in CT using AdaBoost.

作者信息

Ochs Robert A, Goldin Jonathan G, Abtin Fereidoun, Kim Hyun J, Brown Kathleen, Batra Poonam, Roback Donald, McNitt-Gray Michael F, Brown Matthew S

机构信息

Department of Biomedical Physics, University of California Los Angeles, CA 90095, USA.

出版信息

Med Image Anal. 2007 Jun;11(3):315-24. doi: 10.1016/j.media.2007.03.004. Epub 2007 Mar 30.

Abstract

Lung CAD systems require the ability to classify a variety of pulmonary structures as part of the diagnostic process. The purpose of this work was to develop a methodology for fully automated voxel-by-voxel classification of airways, fissures, nodules, and vessels from chest CT images using a single feature set and classification method. Twenty-nine thin section CT scans were obtained from the Lung Image Database Consortium (LIDC). Multiple radiologists labeled voxels corresponding to the following structures: airways (trachea to 6th generation), major and minor lobar fissures, nodules, and vessels (hilum to peripheral), and normal lung parenchyma. The labeled data was used in conjunction with a supervised machine learning approach (AdaBoost) to train a set of ensemble classifiers. Each ensemble classifier was trained to detect voxels part of a specific structure (either airway, fissure, nodule, vessel, or parenchyma). The feature set consisted of voxel attenuation and a small number of features based on the eigenvalues of the Hessian matrix (used to differentiate structures by shape). When each ensemble classifier was composed of 20 weak classifiers, the AUC values for the airway, fissure, nodule, vessel, and parenchyma classifiers were 0.984+/-0.011, 0.949+/-0.009, 0.945+/-0.018, 0.953+/-0.016, and 0.931+/-0.015, respectively. The strong results suggest that this could be an effective input to higher-level anatomical based segmentation models with the potential to improve CAD performance.

摘要

肺部计算机辅助诊断(CAD)系统需要具备将各种肺部结构进行分类的能力,作为诊断过程的一部分。这项工作的目的是开发一种方法,使用单一特征集和分类方法,对胸部CT图像中的气道、肺裂、结节和血管进行全自动逐体素分类。从肺部影像数据库联盟(LIDC)获得了29份薄层CT扫描图像。多名放射科医生对与以下结构相对应的体素进行了标注:气道(气管至第6代)、主要和次要肺叶裂、结节、血管(肺门至外周)以及正常肺实质。将标注数据与监督式机器学习方法(AdaBoost)结合使用,训练了一组集成分类器。每个集成分类器都经过训练,以检测特定结构(气道、肺裂、结节、血管或实质)的体素。特征集包括体素衰减以及基于黑塞矩阵特征值的少量特征(用于通过形状区分结构)。当每个集成分类器由20个弱分类器组成时,气道、肺裂、结节、血管和实质分类器的AUC值分别为0.984±0.011、0.949±0.009、0.945±0.018、0.953±0.016和0.931±0.015。这些强有力的结果表明,这可能是对基于更高层次解剖结构的分割模型的有效输入,有可能提高CAD性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验