From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332.
Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and.
J Biol Chem. 2018 Oct 12;293(41):15867-15886. doi: 10.1074/jbc.RA118.003658. Epub 2018 Aug 14.
Transforming growth factor-β (TGFβ) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFβ signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFβ, and TGFβ signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFβ through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFβ signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFβ-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFβ-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFβ by LEMD3, providing a novel target to antagonize pathological TGFβ signaling.
转化生长因子-β(TGFβ)信号通过 SMAD2/3 是多个器官系统病理性纤维化的重要驱动因素。TGFβ 信号和细胞外基质(ECM)硬度形成了一个恶性循环,其中基质硬度驱动潜伏 TGFβ 的激活,而 TGFβ 信号随后驱动细胞应激和 ECM 合成。此外,ECM 硬度似乎也通过未知机制使细胞对外部激活的 TGFβ敏感。在这里,我们使用人成纤维细胞研究了 ECM 硬度对假定的核内膜蛋白 LEM 结构域蛋白 3(LEMD3)的影响,LEMD3 与细胞的肌动蛋白细胞骨架物理连接,并抑制 TGFβ 信号。我们表明,LEMD3-SMAD2/3 相互作用与 ECM 硬度和 TGFβ 驱动的荧光素酶活性呈负相关,并且 LEMD3 表达与 TGFβ 驱动的荧光素酶报告基因的机械反应相关。我们发现肌动蛋白聚合而不是细胞应激或 LEMD3-核-细胞质偶联对于 LEMD3-SMAD2/3 相互作用是必需的。有趣的是,LEMD3 和 SMAD2/3 经常在细胞质中相互作用,我们发现 LEMD3 被蛋白水解切割成蛋白片段。我们证实,一个保守的 C 端 LEMD3 片段以依赖于硬度的方式与 SMAD2/3 结合,足以拮抗 SMAD2/3 信号。使用人肺活检,我们观察到这些核和细胞质相互作用也存在于组织中,并发现纤维化组织中存在局部减少和细胞质转移的 LEMD3-SMAD2/3 相互作用,如所指出的那样。我们的工作揭示了 LEMD3 的新生物学和 LEMD3 对 TGFβ 的依赖硬度调节,为拮抗病理性 TGFβ 信号提供了一个新的靶标。