Suppr超能文献

空间组学:探索细胞异质性和细胞外基质生物学的新方法。

Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology.

机构信息

Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22903, USA.

Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL 60612, USA.

出版信息

Matrix Biol. 2020 Sep;91-92:152-166. doi: 10.1016/j.matbio.2020.04.004. Epub 2020 May 19.

Abstract

Complex intercellular interactions as well as biomolecular and biomechanical cues from the extracellular matrix (ECM) profoundly affect cellular functions. Traditional transcriptomic and proteomic approaches have provided insight into disease progression by identifying discrete cellular subpopulations or microenvironmental signatures characteristic of normal or pathological tissues, however these techniques do not examine how a given cellular state relates to its interactions with neighboring cells or its surrounding ECM with multiparametric characterization (i.e. ECM alignment, mechanical forces, crosslinking, etc.). Emerging spatial-omic techniques can provide high-resolution mapping of expression profiles similar to scRNA-seq and mass spectroscopy directly within tissues. The ability to preserve the spatial context of cells within samples, their cellular geometry, as well as their surrounding ECM gives spatial-omics the opportunity to interrogate previously unexplored signaling modalities, which has the potential to revolutionize ECM research and our understanding of fibrotic diseases. In this review, we present current spatial transcriptomic and proteomic techniques and discuss how they may be applied to investigate cell-ECM interactions.

摘要

细胞间的相互作用以及细胞外基质(ECM)中的生物分子和生物力学线索深刻地影响着细胞的功能。传统的转录组学和蛋白质组学方法通过识别正常或病理组织特征的离散细胞亚群或微环境特征,为疾病进展提供了深入了解,然而这些技术并没有研究特定细胞状态与其与相邻细胞或周围 ECM 的相互作用如何相关,也没有用多参数特征(即 ECM 排列、机械力、交联等)进行检查。新兴的空间组学技术可以提供类似于 scRNA-seq 和质谱的高分辨率表达谱图谱直接在组织内进行映射。在样本中保留细胞的空间背景、细胞几何形状以及周围 ECM 的能力使空间组学有机会探究以前未探索过的信号模式,这有可能彻底改变 ECM 研究和我们对纤维化疾病的理解。在这篇综述中,我们介绍了现有的空间转录组学和蛋白质组学技术,并讨论了它们如何应用于研究细胞-ECM 相互作用。

相似文献

2
The extracellular matrix: Tools and insights for the "omics" era.细胞外基质:“组学”时代的工具与见解
Matrix Biol. 2016 Jan;49:10-24. doi: 10.1016/j.matbio.2015.06.003. Epub 2015 Jul 8.
3
Defining the extracellular matrix using proteomics.使用蛋白质组学定义细胞外基质。
Int J Exp Pathol. 2013 Apr;94(2):75-92. doi: 10.1111/iep.12011. Epub 2013 Feb 19.
4
Degradomics technologies in matrisome exploration.基质组学探索中的降解组学技术。
Matrix Biol. 2022 Dec;114:1-17. doi: 10.1016/j.matbio.2022.10.003. Epub 2022 Oct 22.
7
Targeting the renin-angiotensin-aldosterone system in fibrosis.靶向肾素-血管紧张素-醛固酮系统治疗纤维化。
Matrix Biol. 2020 Sep;91-92:92-108. doi: 10.1016/j.matbio.2020.04.005. Epub 2020 May 16.

引用本文的文献

9
Modelling and targeting mechanical forces in organ fibrosis.器官纤维化中机械力的建模与靶向研究
Nat Rev Bioeng. 2024 Apr;2(4):305-323. doi: 10.1038/s44222-023-00144-3. Epub 2024 Jan 18.

本文引用的文献

1
A user's perspective on GeoMx digital spatial profiling.用户对GeoMx数字空间分析的看法。
Immunooncol Technol. 2019 May 30;1:11-18. doi: 10.1016/j.iotech.2019.05.001. eCollection 2019 Jul.
3
The liver matrisome - looking beyond collagens.肝脏基质组——超越胶原蛋白的研究
JHEP Rep. 2020 Apr 18;2(4):100115. doi: 10.1016/j.jhepr.2020.100115. eCollection 2020 Aug.
4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验