Suppr超能文献

寄生虫免疫调节中的表位网络作用。

A Role for Epitope Networking in Immunomodulation by Helminths.

机构信息

EigenBio LLC, Madison, WI, United States.

出版信息

Front Immunol. 2018 Jul 31;9:1763. doi: 10.3389/fimmu.2018.01763. eCollection 2018.

Abstract

Helminth infections, by nematodes, trematodes, or cestodes, can lead to the modulation of host immune responses. This allows long-duration parasite infections and also impacts responses to co-infections. Surface, secreted, excreted, and shed proteins are thought to play a major role in modulation. A commonly reported feature of such immune modulation is the role of T regulatory (Treg) cells and IL-10. Efforts to identify helminth proteins, which cause immunomodulation, have identified candidates but not provided clarity as to a uniform mechanism driving modulation. In this study, we applied a bioinformatics systems approach, allowing us to analyze predicted T-cell epitopes of 17 helminth species and the responses to their surface proteins. In addition to major histocompatibility complex (MHC) binding, we analyzed amino acid motifs that would be recognized by T-cell receptors [T-cell-exposed motifs (TCEMs)]. All the helminth species examined have, within their surface proteins, peptides, which combine very common TCEMs with predicted high affinity binding to many human MHC alleles. This combination of features would result in large cognate T cell and a high probability of eliciting Treg responses. The TCEMs, which determine recognition by responding T-cell clones, are shared to a high degree between helminth species and with and , both common co-infecting organisms. The implication of our observations is not only that Treg cells play a significant role in helminth-induced immune modulation but also that the epitope specificities of Treg responses are shared across species and genera of helminth. Hence, the immune response to a given helminth cannot be considered in isolation but rather forms part of an epitope ecosystem, or microenvironment, in which potentially immunosuppressive peptides in the helminth network via their common T-cell receptor recognition signals with T-cell epitopes in self proteins, microbiome, other helminths, and taxonomically unrelated pathogens. Such a systems approach provides a high-level view of the antigen-immune system signaling dynamics that may bias a host's immune response to helminth infections toward immune modulation. It may indicate how helminths have evolved to select for peptides that favor long-term parasite host coexistence.

摘要

寄生虫感染,如线虫、吸虫或绦虫感染,可导致宿主免疫反应的调节。这使得寄生虫能够长时间感染宿主,也会影响对合并感染的反应。表面、分泌、排泄和脱落的蛋白质被认为在调节中起着重要作用。这种免疫调节的一个常见特征是 T 调节(Treg)细胞和白细胞介素 10(IL-10)的作用。为了鉴定导致免疫调节的寄生虫蛋白,人们已经鉴定出了候选蛋白,但并没有阐明驱动调节的统一机制。在这项研究中,我们应用了一种生物信息学系统方法,允许我们分析 17 种寄生虫物种的预测 T 细胞表位及其表面蛋白的反应。除了主要组织相容性复合体(MHC)结合外,我们还分析了能够被 T 细胞受体识别的氨基酸模体(T 细胞暴露模体,TCEM)。所有被检查的寄生虫物种在其表面蛋白中都有肽,这些肽结合了非常常见的 TCEM 与预测的对许多人类 MHC 等位基因的高亲和力结合。这种特征的结合将导致大量同源 T 细胞,并极有可能引起 Treg 反应。决定反应性 T 细胞克隆识别的 TCEM 在寄生虫物种之间以及与常见的合并感染生物 和 之间高度共享。我们观察结果的含义不仅是 Treg 细胞在寄生虫诱导的免疫调节中起着重要作用,而且 Treg 反应的表位特异性在寄生虫和蠕虫的种属之间也是共享的。因此,不能孤立地考虑对特定寄生虫的免疫反应,而应将其视为一个表位生态系统或微环境的一部分,其中寄生虫网络中的潜在免疫抑制性肽通过与自身蛋白、微生物组、其他寄生虫和分类上无关的病原体中的 T 细胞表位的共同 T 细胞受体识别信号,与寄生虫网络中的潜在免疫抑制性肽相互作用。这种系统方法提供了抗原-免疫系统信号动态的高级视图,这可能会使宿主对寄生虫感染的免疫反应偏向于免疫调节。它可能表明寄生虫是如何进化选择有利于寄生虫与宿主长期共存的肽的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b468/6079203/5af4ba8f3502/fimmu-09-01763-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验