Suppr超能文献

利用基因组选择方法预测栉孔扇贝(Chlamys farreri)的生长性状。

Predicting Growth Traits with Genomic Selection Methods in Zhikong Scallop (Chlamys farreri).

机构信息

Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.

Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.

出版信息

Mar Biotechnol (NY). 2018 Dec;20(6):769-779. doi: 10.1007/s10126-018-9847-z. Epub 2018 Aug 16.

Abstract

Selective breeding is a common and effective approach for genetic improvement of aquaculture stocks with parental selection as the key factor. Genomic selection (GS) has been proposed as a promising tool to facilitate selective breeding. Here, we evaluated the predictability of four GS methods in Zhikong scallop (Chlamys farreri) through real dataset analyses of four economical traits (e.g., shell length, shell height, shell width, and whole weight). Our analysis revealed that different GS models exhibited variable performance in prediction accuracy depending on genetic and statistical factors, but non-parametric method, including reproducing kernel Hilbert spaces regression (RKHS) and sparse neural networks (SNN), generally outperformed parametric linear method, such as genomic best linear unbiased prediction (GBLUP) and BayesB. Furthermore, we demonstrated that the predictability relied mainly on the heritability regardless of GS methods. The size of training population and marker density also had considerable effects on the predictive performance. In practice, increasing the training population size could better improve the genomic prediction than raising the marker density. This study is the first to apply non-linear model and neural networks for GS in scallop and should be valuable to help develop strategies for aquaculture breeding programs.

摘要

选择育种是水产养殖种群遗传改良的常用且有效的方法,亲本品系选择是关键因素。基因组选择(GS)已被提议作为一种有前途的工具来促进选择育种。在这里,我们通过对四个经济性状(例如壳长、壳高、壳宽和全重)的真实数据集分析,评估了四种 GS 方法在栉孔扇贝(Chlamys farreri)中的可预测性。我们的分析表明,不同的 GS 模型在预测准确性方面表现出不同的性能,这取决于遗传和统计因素,但非参数方法,包括再生核希尔伯特空间回归(RKHS)和稀疏神经网络(SNN),通常优于参数线性方法,如基因组最佳线性无偏预测(GBLUP)和贝叶斯 B。此外,我们证明了可预测性主要依赖于遗传力,而与 GS 方法无关。训练群体的大小和标记密度也对预测性能有相当大的影响。在实践中,增加训练群体的大小可以比提高标记密度更好地提高基因组预测。本研究首次将非线性模型和神经网络应用于扇贝的 GS,应该有助于制定水产养殖育种计划的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验