Nanotechnology Innovation Center Kansas State, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
Sci Rep. 2016 Sep 14;6:33287. doi: 10.1038/srep33287.
Two dimensional fluorescence difference spectroscopy (2D FDS) detects nanoparticle interactions following surface functionalization and biomolecule loading by generating a spectral signature of the fluorescent intensity per excitation and emission wavelengths. Comparing metal oxide nanoparticles revealed a unique spectral signature per material composition. 2D FDS showed to be sensitive to changes in surface properties between ZnO NPs synthesized by different methods. ZnO NP loaded with glycol chitosan, polyacrylic acid (PAA), or methoxy polyethylene glycol (mPEG) exhibited a distinct spectral signature shift. ZnO NP loaded with Torula Yeast RNA (TYRNA)(640 nm), polyinosinic: polycytidylic acid (pIC)(680 nm), or splice switching oligonucleotide (SSO)(650 nm) each revealed a shift in emission. Ras-Binding domain (RBD) at three concentrations (25, 37.5, 50 μg/mL) showed that fluorescent intensity was inversely related to the concentration of protein loaded. These data support 2D FDS as a novel technique in identifying nanoparticles and their surface interactions as a quality assurance tool.
二维荧光差异光谱学(2D FDS)通过生成每个激发和发射波长的荧光强度的光谱特征来检测表面功能化和生物分子负载后的纳米颗粒相互作用。比较金属氧化物纳米颗粒揭示了每种材料成分的独特光谱特征。2D FDS 显示对不同方法合成的 ZnO NPs 之间表面性质的变化敏感。负载有乙二醇壳聚糖、聚丙烯酸(PAA)或甲氧基聚乙二醇(mPEG)的 ZnO NP 表现出明显的光谱特征偏移。负载有Torula Yeast RNA(TYRNA)(640nm)、聚肌苷酸:聚胞苷酸(pIC)(680nm)或剪接转换寡核苷酸(SSO)(650nm)的 ZnO NP 各自显示出发射的偏移。在三个浓度(25、37.5、50μg/mL)下的 Ras 结合结构域(RBD)表明,荧光强度与负载的蛋白质浓度成反比。这些数据支持 2D FDS 作为一种识别纳米颗粒及其表面相互作用的新技术,作为质量保证工具。