Suppr超能文献

聚四氟乙烯作为用于高电流密度析氧的多功能粘合剂。

PTFE as a Multifunctional Binder for High-Current-Density Oxygen Evolution.

作者信息

Deng Bohan, He Xian, Du Peng, Zhao Wei, Long Yuanzheng, Zhang Zhuting, Liu Hongyi, Huang Kai, Wu Hui

机构信息

State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

出版信息

Adv Sci (Weinh). 2024 Nov;11(41):e2408544. doi: 10.1002/advs.202408544. Epub 2024 Sep 4.

Abstract

Binder plays a crucial role in constructing high-performance electrodes for water electrolysis. While most research has been focused on advancing electrocatalysts, the application of binders in electrode design has yet to be fully explored. Herein, the in situ incorporation of polytetrafluoroethylene (PTFE) as a multifunctional binder, which increases electrochemical active sites, enhances mass transfer, and strengthens the mechanical and chemical robustness of oxygen evolution reaction (OER) electrodes, is reported. The NiFe-LDH@PTFE/NF electrode prepared by co-deposition of PTFE with NiFe-layered double hydroxide onto nickel foam demonstrates exceptional long-term stability with a minimal potential decay rate of 0.034 mV h at 500 mA cm for 1000 h. The alkaline water electrolyzer utilizing NiFe-LDH@PTFE/NF requires only 1.584 V at 500 mA cm and sustains high energy efficiency over 1000 h under industrial operating conditions. This work opens a new path for stabilizing active sites to obtain durable electrodes for OER as well as other electrocatalytic systems.

摘要

粘结剂在构建用于水电解的高性能电极方面起着至关重要的作用。虽然大多数研究都集中在改进电催化剂上,但粘结剂在电极设计中的应用尚未得到充分探索。在此,本文报道了原位掺入聚四氟乙烯(PTFE)作为多功能粘结剂,其可增加电化学活性位点、增强传质并强化析氧反应(OER)电极的机械和化学稳定性。通过将PTFE与镍铁层状双氢氧化物共沉积到泡沫镍上制备的NiFe-LDH@PTFE/NF电极在500 mA cm下表现出优异的长期稳定性,在1000小时内的最小电位衰减率为0.034 mV h。使用NiFe-LDH@PTFE/NF的碱性水电解槽在500 mA cm下仅需1.584 V,并在工业运行条件下1000小时内保持高能量效率。这项工作为稳定活性位点以获得用于OER以及其他电催化系统的耐用电极开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfc/11538630/977f8237e112/ADVS-11-2408544-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验