Suppr超能文献

非热等离子体射流处理会对白色念珠菌 SC5314 生物膜的活性和结构产生负面影响。

Nonthermal Plasma Jet Treatment Negatively Affects the Viability and Structure of Candida albicans SC5314 Biofilms.

机构信息

Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany

Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.

出版信息

Appl Environ Microbiol. 2018 Oct 17;84(21). doi: 10.1128/AEM.01163-18. Print 2018 Nov 1.

Abstract

Microorganisms are predominantly organized in biofilms, where cells live in dense communities and are more resistant to external stresses than are their planktonic counterparts. With experiments, the susceptibility of biofilms to a nonthermal plasma treatment (plasma source, kINPen09) in terms of growth, survival, and cell viability was investigated. strain SC5314 (ATCC MYA-2876) was plasma treated for different time periods (30 s, 60 s, 120 s, 180 s, 300 s). The results of the experiments, encompassing CFU, fluorescence Live/Dead, and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) assays, revealed a negative influence of the plasma treatment on the proliferation ability, vitality, and metabolism of biofilms, respectively. Morphological analysis of plasma-treated biofilms using atomic force microscopy supported the indications for lethal plasma effects concomitant with membrane disruptions and the loss of intracellular fluid. Yielding controversial results compared to those of other publications, fluorescence and confocal laser scanning microscopic inspection of plasma-treated biofilms indicated that an inactivation of cells appeared mainly on the bottom of the biofilms. If this inactivation leads to a detachment of the biofilms from the overgrown surface, it might offer completely new approaches in the plasma treatment of biofilms. Because of plasma's biochemical-mechanical mode of action, resistance of microbial cells against plasma is unknown at this state of research. Microbial communities are an increasing problem in medicine but also in industry. Thus, an efficient and rapid removal of biofilms is becoming increasingly important. With the aid of the kINPen09, a radiofrequency plasma jet (RFPJ) instrument, decisive new findings on the effects of plasma on biofilms were obtained. This work showed that the inactivation of biofilms takes place mainly on the bottom, which in turn offers new possibilities for the removal of biofilms by other strategies, e.g., mechanical treatment. This result demonstrated that nonthermal atmospheric pressure plasma is well suited for biofilm decontamination.

摘要

微生物主要以生物膜的形式存在,在生物膜中,细胞生活在密集的群落中,比浮游细胞更能抵抗外部压力。通过实验,研究了非热等离子体处理(等离子体源,kINPen09)对生物膜生长、存活和细胞活力的影响。将 SC5314 菌株(ATCC MYA-2876)用等离子体处理不同的时间(30 s、60 s、120 s、180 s、300 s)。实验结果包括 CFU、荧光死活、2,3-双-(2-甲氧基-4-硝基-5-磺苯基)-2H-四唑-5-羧基苯胺盐(XTT)检测,分别表明等离子体处理对生物膜的增殖能力、活力和代谢有负面影响。原子力显微镜对等离子体处理生物膜的形态分析支持了等离子体致死效应的存在,同时伴随着膜破裂和细胞内液体的流失。与其他出版物的结果相比,产生了有争议的结果,对等离子体处理生物膜的荧光和共聚焦激光扫描显微镜检查表明,细胞失活主要发生在生物膜的底部。如果这种失活导致生物膜从过度生长的表面脱落,它可能为等离子体处理生物膜提供全新的方法。由于等离子体的生化机械作用模式,目前研究状态下微生物细胞对等离子体的抗性是未知的。微生物群落是医学和工业中日益严重的问题。因此,高效快速地去除生物膜变得越来越重要。借助 kINPen09 射频等离子体射流(RFPJ)仪器,获得了关于等离子体对生物膜影响的决定性新发现。这项工作表明,生物膜的失活主要发生在底部,这反过来又为通过其他策略(例如机械处理)去除生物膜提供了新的可能性。这一结果表明,非热大气压等离子体非常适合生物膜去污。

相似文献

1
Nonthermal Plasma Jet Treatment Negatively Affects the Viability and Structure of Candida albicans SC5314 Biofilms.
Appl Environ Microbiol. 2018 Oct 17;84(21). doi: 10.1128/AEM.01163-18. Print 2018 Nov 1.
2
Antimicrobial effects of microwave-induced plasma torch (MiniMIP) treatment on Candida albicans biofilms.
Microb Biotechnol. 2019 Sep;12(5):1034-1048. doi: 10.1111/1751-7915.13459. Epub 2019 Jul 1.
4
Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.
Appl Environ Microbiol. 2012 Jun;78(12):4242-7. doi: 10.1128/AEM.07235-11. Epub 2012 Mar 30.
5
Quinacrine inhibits Candida albicans growth and filamentation at neutral pH.
Antimicrob Agents Chemother. 2014 Dec;58(12):7501-9. doi: 10.1128/AAC.03083-14. Epub 2014 Oct 6.
7
In vitro analyses of the effects of heparin and parabens on Candida albicans biofilms and planktonic cells.
Antimicrob Agents Chemother. 2012 Jan;56(1):148-53. doi: 10.1128/AAC.05061-11. Epub 2011 Oct 10.
8
Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms.
J Antimicrob Chemother. 2012 Mar;67(3):618-21. doi: 10.1093/jac/dkr512. Epub 2011 Dec 13.

引用本文的文献

1
Preventing Oral Dual Biofilm Development with Innovative Bioactive Varnishes.
J Funct Biomater. 2025 Feb 18;16(2):70. doi: 10.3390/jfb16020070.
2
Helium Cold Atmospheric Plasma Causes Morphological and Biochemical Alterations in Cells.
Molecules. 2023 Dec 3;28(23):7919. doi: 10.3390/molecules28237919.
3
Cold Atmospheric Plasma: A Promising and Safe Therapeutic Strategy for Atopic Dermatitis.
Int Arch Allergy Immunol. 2023;184(12):1184-1197. doi: 10.1159/000531967. Epub 2023 Sep 13.
4
Antimicrobial Effects of Non-Thermal Atmospheric Pressure Plasma on Oral Microcosm Biofilms.
Int J Environ Res Public Health. 2023 Jan 30;20(3):2447. doi: 10.3390/ijerph20032447.
5
Evaluation of the biofilm life cycle between and .
Front Cell Infect Microbiol. 2022 Aug 18;12:953168. doi: 10.3389/fcimb.2022.953168. eCollection 2022.
6
Effect of Cold Atmospheric Plasma Jet Associated to Polyene Antifungals on Biofilms.
Molecules. 2021 Sep 25;26(19):5815. doi: 10.3390/molecules26195815.
7
Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice.
Adv Sci (Weinh). 2021 Mar 8;8(10):2003395. doi: 10.1002/advs.202003395. eCollection 2021 May.
8
9
Fighting Mixed-Species Microbial Biofilms With Cold Atmospheric Plasma.
Front Microbiol. 2020 May 20;11:1000. doi: 10.3389/fmicb.2020.01000. eCollection 2020.
10
Antimicrobial effects of microwave-induced plasma torch (MiniMIP) treatment on Candida albicans biofilms.
Microb Biotechnol. 2019 Sep;12(5):1034-1048. doi: 10.1111/1751-7915.13459. Epub 2019 Jul 1.

本文引用的文献

2
Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant .
Front Microbiol. 2018 Mar 23;9:537. doi: 10.3389/fmicb.2018.00537. eCollection 2018.
3
Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.
Pathogens. 2018 Jan 25;7(1):15. doi: 10.3390/pathogens7010015.
5
Nonthermal Plasma in Dentistry: An Update.
J Int Soc Prev Community Dent. 2017 May-Jun;7(3):71-75. doi: 10.4103/jispcd.JISPCD_29_17. Epub 2017 May 22.
6
The Anti-Adhesive Effect of Curcumin on Biofilms on Denture Materials.
Front Microbiol. 2017 Apr 20;8:659. doi: 10.3389/fmicb.2017.00659. eCollection 2017.
7
Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria.
FEMS Microbiol Rev. 2017 May 1;41(3):276-301. doi: 10.1093/femsre/fux010.
8
Experimental evolution in biofilm populations.
FEMS Microbiol Rev. 2016 Nov 1;40(6):980. doi: 10.1093/femsre/fuw030.
9
An Efficient Multilinear Optimization Framework for Hypergraph Matching.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1054-1075. doi: 10.1109/TPAMI.2016.2574706. Epub 2016 Jun 1.
10
Effect of Atmospheric-Pressure Cold Plasma on Pathogenic Oral Biofilms and In Vitro Reconstituted Oral Epithelium.
PLoS One. 2016 May 25;11(5):e0155427. doi: 10.1371/journal.pone.0155427. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验