Divisions of Nephrology and.
Division of Nephrology, Department of Medicine and.
J Am Soc Nephrol. 2018 Oct;29(10):2529-2545. doi: 10.1681/ASN.2018030324. Epub 2018 Aug 24.
Podocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte's actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte.
We induced podocyte-specific in two proteinuric murine models, HIV-1 transgenic () mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific in mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation.
In mice, inducing podocyte-specific attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the mouse model shows that induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1.
Inducing podocyte-specific attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that induction might be a potential strategy for treating proteinuric kidney disease.
足细胞损伤是蛋白尿性肾脏疾病(如 FSGS 和微小病变性肾病)的标志,而足细胞的肌动蛋白细胞骨架的不稳定性导致许多情况下的足细胞功能障碍。虽然有一些药物(如糖皮质激素和环孢素)可以稳定肌动蛋白细胞骨架,但全身性毒性会阻碍其长期使用。我们之前的研究表明,肾脏丰富的锌指转录因子 Krüppel 样因子 15(KLF15)的缺失会增加蛋白尿性肾脏疾病的易感性,并减弱维甲酸和糖皮质激素对足细胞的有益作用。
我们在两种蛋白尿的小鼠模型(HIV-1 转基因(Tg)小鼠和阿霉素(ADR)诱导的肾病)中诱导足细胞特异性 缺失,并使用分离的肾小球 RNA 测序和随后的富集分析来研究 缺失在 Tg 小鼠中介导的途径。我们还在培养的人足细胞中探索了转录因子 Wilms Tumor 1(WT1)的潜在介导作用,WT1 对足细胞分化至关重要。
在 Tg 小鼠中,诱导足细胞特异性 缺失可减轻足细胞损伤、肾小球硬化、肾小管间质纤维化和炎症,同时改善肾功能和整体存活率;它还可减轻 ADR 治疗的小鼠中的足细胞损伤。来自 缺失小鼠模型的 RNA 测序的富集分析表明, 缺失激活了与肌动蛋白细胞骨架稳定、焦点黏附和足细胞分化相关的途径。转录因子富集分析,进一步的实验验证,表明 KLF15 活性部分由 WT1 介导。
诱导足细胞特异性 缺失通过直接和间接上调对足细胞分化至关重要的基因来减轻肾脏损伤,提示 缺失诱导可能是治疗蛋白尿性肾脏疾病的一种潜在策略。