Mei Kuo-Ching, Ghazaryan Artur, Teoh Er Zhen, Summers Huw D, Li Yueting, Ballesteros Belén, Piasecka Justyna, Walters Adam, Hider Robert C, Mailänder Volker, Al-Jamal Khuloud T
Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Adv Mater. 2018 Aug 24:e1802732. doi: 10.1002/adma.201802732.
Hard corona (HC) protein, i.e., the environmental proteins of the biological medium that are bound to a nanosurface, is known to affect the biological fate of a nanomedicine. Due to the size, curvature, and specific surface area (SSA) 3-factor interactions inherited in the traditional 3D nanoparticle, HC-dependent bio-nano interactions are often poorly probed and interpreted. Here, the first HC-by-design case study in 2D is demonstrated that sequentially and linearly changes the HC quantity using functionalized graphene oxide (GO) nanosheets. The HC quantity and HC quality are analyzed using NanoDrop and label-free liquid chromatography-mass spectrometry (LC-MS) followed by principal component analysis (PCA). Cellular responses (uptake and cytotoxicity in J774 cell model) are compared using imaging cytometry and the modified lactate dehydrogenase assays, respectively. Cellular uptake linearly and solely correlates with HC quantity (R = 0.99634). The nanotoxicity, analyzed by retrospective design of experiment (DoE), is found to be dependent on the nanomaterial uptake (primary), HC composition (secondary), and nanomaterial exposure dose (tertiary). This unique 2D design eliminates the size-curvature-SSA multifactor interactions and can serve as a reliable screening platform to uncover HC-dependent bio-nano interactions to enable the next-generation quality-by-design (QbD) nanomedicines for better clinical translation.
硬冠(HC)蛋白,即与纳米表面结合的生物介质环境蛋白,已知会影响纳米药物的生物学命运。由于传统3D纳米颗粒固有的尺寸、曲率和比表面积(SSA)三因素相互作用,依赖于HC的生物-纳米相互作用常常难以探究和解释。在此,展示了二维中首个通过设计实现的HC案例研究,即使用功能化氧化石墨烯(GO)纳米片依次线性改变HC量。使用NanoDrop和无标记液相色谱-质谱联用(LC-MS)并结合主成分分析(PCA)来分析HC量和HC质量。分别使用成像细胞术和改良的乳酸脱氢酶测定法比较细胞反应(J774细胞模型中的摄取和细胞毒性)。细胞摄取与HC量呈线性且唯一相关(R = 0.99634)。通过实验设计(DoE)的回顾性设计分析发现,纳米毒性取决于纳米材料摄取(主要因素)、HC组成(次要因素)和纳米材料暴露剂量(第三因素)。这种独特的二维设计消除了尺寸-曲率-SSA多因素相互作用,可作为一个可靠的筛选平台,以揭示依赖于HC的生物-纳米相互作用,从而实现下一代质量源于设计(QbD)的纳米药物,以实现更好的临床转化。