Suppr超能文献

靶向癌症中的线粒体:当前的概念和免疫治疗方法。

Targeting mitochondria in cancer: current concepts and immunotherapy approaches.

机构信息

Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Transl Res. 2018 Dec;202:35-51. doi: 10.1016/j.trsl.2018.07.013. Epub 2018 Jul 31.

Abstract

An essential advantage during eukaryotic cell evolution was the acquisition of a network of mitochondria as a source of energy for cell metabolism and contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation including mitochondrial biogenesis, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. In cancer, the metabolism of cells is reprogrammed for energy generation from oxidative phosphorylation to aerobic glycolysis and impacts cancer mitochondrial function. Furthermore cancer cells can also modulate energy metabolism within the cancer microenvironment including immune cells and induce "metabolic anergy" of antitumor immune response. Classical approaches targeting the mitochondria of cancer cells usually aim at inducing changing energy metabolism or directly affecting functions of mitochondrial antiapoptotic proteins but most of such approaches miss the required specificity of action and carry important side effects. Several types of cancers harbor somatic mitochondrial DNA mutations and specific immune response to mutated mitochondrial proteins has been observed. An attractive alternative way to target the mitochondria in cancer cells is the induction of an adaptive immune response against mutated mitochondrial proteins. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial DNA mutations or Tumor Associated Mitochondria Antigens using the immune system.

摘要

在真核细胞进化过程中,一个重要的优势是获得了线粒体网络作为细胞代谢的能量来源。与传统观点相反,功能正常的线粒体对于癌细胞是必不可少的。线粒体生物学的多个方面,超出了生物能量学,支持转化,包括线粒体生物发生、裂变和融合动力学、细胞死亡易感性、氧化应激调节、代谢和信号转导。在癌症中,细胞的代谢被重新编程,从氧化磷酸化生成能量转变为有氧糖酵解,并影响癌症线粒体功能。此外,癌细胞还可以调节癌症微环境中的能量代谢,包括免疫细胞,并诱导抗肿瘤免疫反应的“代谢无能”。针对癌细胞线粒体的经典方法通常旨在诱导改变能量代谢或直接影响线粒体抗凋亡蛋白的功能,但大多数此类方法都缺乏所需的作用特异性,并具有重要的副作用。一些类型的癌症存在体细胞线粒体 DNA 突变,并且已经观察到对突变线粒体蛋白的特异性免疫反应。靶向癌细胞线粒体的一种有吸引力的替代方法是诱导针对突变线粒体蛋白的适应性免疫反应。在这里,我们综述了线粒体通过影响致癌作用的所有步骤的内在和外在细胞机制,重点讨论了利用免疫系统靶向线粒体 DNA 突变或肿瘤相关线粒体抗原的治疗潜力。

相似文献

1
Targeting mitochondria in cancer: current concepts and immunotherapy approaches.
Transl Res. 2018 Dec;202:35-51. doi: 10.1016/j.trsl.2018.07.013. Epub 2018 Jul 31.
2
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
3
Mitochondria and cancer chemoresistance.
Biochim Biophys Acta Bioenerg. 2017 Aug;1858(8):686-699. doi: 10.1016/j.bbabio.2017.01.012. Epub 2017 Feb 1.
4
Dysfunctional T cell metabolism in the tumor microenvironment.
Cytokine Growth Factor Rev. 2017 Jun;35:7-14. doi: 10.1016/j.cytogfr.2017.04.003. Epub 2017 Apr 23.
5
The mitochondrial dynamics in cancer and immune-surveillance.
Semin Cancer Biol. 2017 Dec;47:29-42. doi: 10.1016/j.semcancer.2017.06.007. Epub 2017 Jun 24.
6
Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach.
Mutat Res Rev Mutat Res. 2024 Jan-Jun;793:108490. doi: 10.1016/j.mrrev.2024.108490. Epub 2024 Mar 8.
7
Mitochondrial Changes in Cancer.
Handb Exp Pharmacol. 2017;240:211-227. doi: 10.1007/164_2016_40.
8
Current and upcoming mitochondrial targets for cancer therapy.
Semin Cancer Biol. 2017 Dec;47:154-167. doi: 10.1016/j.semcancer.2017.06.006. Epub 2017 Jun 13.
9
Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches.
Front Immunol. 2020 Oct 16;11:573326. doi: 10.3389/fimmu.2020.573326. eCollection 2020.
10
Targeting Drp1 and mitochondrial fission for therapeutic immune modulation.
Pharmacol Res. 2019 Aug;146:104317. doi: 10.1016/j.phrs.2019.104317. Epub 2019 Jun 17.

引用本文的文献

2
Mitophagy's impacts on cancer and neurodegenerative diseases: implications for future therapies.
J Hematol Oncol. 2025 Aug 1;18(1):78. doi: 10.1186/s13045-025-01727-w.
3
Triphenylphosphine-Based Mitochondrial Targeting Nanocarriers: Advancing Cancer Therapy.
Clin Pharmacol. 2025 Jun 10;17:119-141. doi: 10.2147/CPAA.S526895. eCollection 2025.
5
Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy.
Int J Mol Sci. 2025 Feb 6;26(3):1376. doi: 10.3390/ijms26031376.
6
NECTIN-4-redirected T cell Antigen Coupler T cells bearing CD28 show superior antitumor responses against solid tumors.
Front Immunol. 2024 Dec 13;15:1456443. doi: 10.3389/fimmu.2024.1456443. eCollection 2024.
8
The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy.
Cancer Metastasis Rev. 2024 Dec;43(4):1419-1443. doi: 10.1007/s10555-024-10211-9. Epub 2024 Sep 23.
9
IRnet: Immunotherapy response prediction using pathway knowledge-informed graph neural network.
J Adv Res. 2025 Jun;72:319-331. doi: 10.1016/j.jare.2024.07.036. Epub 2024 Aug 7.
10
A Comprehensive Prognostic Model for Colon Adenocarcinoma Depending on Nuclear-Mitochondrial-Related Genes.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241258570. doi: 10.1177/15330338241258570.

本文引用的文献

1
Metformin in cancer.
Diabetes Res Clin Pract. 2018 Sep;143:409-419. doi: 10.1016/j.diabres.2018.05.023. Epub 2018 May 26.
2
PINK1 autophosphorylation is required for ubiquitin recognition.
EMBO Rep. 2018 Apr;19(4). doi: 10.15252/embr.201744981. Epub 2018 Feb 23.
3
Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):E478-E487. doi: 10.1073/pnas.1711950115. Epub 2018 Jan 2.
4
ER-mitochondria contacts: Actin dynamics at the ER control mitochondrial fission via calcium release.
J Cell Biol. 2018 Jan 2;217(1):15-17. doi: 10.1083/jcb.201711075. Epub 2017 Dec 19.
5
Mitochondrial metabolism and cancer.
Cell Res. 2018 Mar;28(3):265-280. doi: 10.1038/cr.2017.155. Epub 2017 Dec 8.
6
Roles of Mitochondrial DNA Signaling in Immune Responses.
Adv Exp Med Biol. 2017;1038:39-53. doi: 10.1007/978-981-10-6674-0_4.
7
Mitophagy in Parkinson's Disease: Pathogenic and Therapeutic Implications.
Front Neurol. 2017 Oct 4;8:527. doi: 10.3389/fneur.2017.00527. eCollection 2017.
8
Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights.
Biol Chem. 2018 Jan 26;399(2):147-178. doi: 10.1515/hsz-2017-0228.
9
The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy.
Trends Biochem Sci. 2017 Nov;42(11):873-886. doi: 10.1016/j.tibs.2017.09.002. Epub 2017 Sep 22.
10
Mitochondrial fission facilitates the selective mitophagy of protein aggregates.
J Cell Biol. 2017 Oct 2;216(10):3231-3247. doi: 10.1083/jcb.201612106. Epub 2017 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验