Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Transl Res. 2018 Dec;202:35-51. doi: 10.1016/j.trsl.2018.07.013. Epub 2018 Jul 31.
An essential advantage during eukaryotic cell evolution was the acquisition of a network of mitochondria as a source of energy for cell metabolism and contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation including mitochondrial biogenesis, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. In cancer, the metabolism of cells is reprogrammed for energy generation from oxidative phosphorylation to aerobic glycolysis and impacts cancer mitochondrial function. Furthermore cancer cells can also modulate energy metabolism within the cancer microenvironment including immune cells and induce "metabolic anergy" of antitumor immune response. Classical approaches targeting the mitochondria of cancer cells usually aim at inducing changing energy metabolism or directly affecting functions of mitochondrial antiapoptotic proteins but most of such approaches miss the required specificity of action and carry important side effects. Several types of cancers harbor somatic mitochondrial DNA mutations and specific immune response to mutated mitochondrial proteins has been observed. An attractive alternative way to target the mitochondria in cancer cells is the induction of an adaptive immune response against mutated mitochondrial proteins. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial DNA mutations or Tumor Associated Mitochondria Antigens using the immune system.
在真核细胞进化过程中,一个重要的优势是获得了线粒体网络作为细胞代谢的能量来源。与传统观点相反,功能正常的线粒体对于癌细胞是必不可少的。线粒体生物学的多个方面,超出了生物能量学,支持转化,包括线粒体生物发生、裂变和融合动力学、细胞死亡易感性、氧化应激调节、代谢和信号转导。在癌症中,细胞的代谢被重新编程,从氧化磷酸化生成能量转变为有氧糖酵解,并影响癌症线粒体功能。此外,癌细胞还可以调节癌症微环境中的能量代谢,包括免疫细胞,并诱导抗肿瘤免疫反应的“代谢无能”。针对癌细胞线粒体的经典方法通常旨在诱导改变能量代谢或直接影响线粒体抗凋亡蛋白的功能,但大多数此类方法都缺乏所需的作用特异性,并具有重要的副作用。一些类型的癌症存在体细胞线粒体 DNA 突变,并且已经观察到对突变线粒体蛋白的特异性免疫反应。靶向癌细胞线粒体的一种有吸引力的替代方法是诱导针对突变线粒体蛋白的适应性免疫反应。在这里,我们综述了线粒体通过影响致癌作用的所有步骤的内在和外在细胞机制,重点讨论了利用免疫系统靶向线粒体 DNA 突变或肿瘤相关线粒体抗原的治疗潜力。