Suppr超能文献

评估家庭预算调查中的饮食摄入量:孟加拉国的国家分析。

Assessing dietary intakes from household budget surveys: A national analysis in Bangladesh.

机构信息

Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States of America.

MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS One. 2018 Aug 27;13(8):e0202831. doi: 10.1371/journal.pone.0202831. eCollection 2018.

Abstract

BACKGROUND

Accurate national information on dietary intakes, including heterogeneity among individuals, is critical to inform health implications and policy priorities. In low- and middle-income countries, household expenditure surveys constitute the major source of food data, but with uncertain validity for individual-level intakes.

OBJECTIVE

To investigate how individualized dietary consumption estimated from household survey data compared with individual-level 24-hr dietary recalls (24hR); and to assess potential heterogeneity by method for individualizing household intakes, dietary indicator, and individual characteristics (age, sex, education, religion, household income).

METHODS

We evaluated data from the 2011-2012 Bangladesh Household Integrated Survey (BIHS), which included household-level consumption data (5,503 households) and individual-level dietary data based on 24hR from these households (22,173 participants). Household and 24hR estimates were standardized and harmonized for 33 dietary indicators, including 9 food groups, total energy, 8 macronutrients, and 15 micronutrients. Individual consumption was estimated from household data using two approaches, the Adult Male Equivalent (AME) and per capita (PC) approach. For each dietary indicator, differences in household vs. individual mean estimates were evaluated overall and by strata of individual characteristics, using Spearman's correlations and univariate and multivariate linear regression models.

RESULTS

Individualized household estimates overestimated individual intakes from 24hR for all dietary factors using either estimation method (P<0.001 for each), except for starchy vegetables (AME: P = 0.15; PC: P = 0.85). For foods, overestimation ranged from 4% for seafood to about 240% for fruits, and for nutrients from 11% for carbohydrates and poly-unsaturated fats to 55% for vitamin C, with similar overestimation for the AME and the PC method. By strata, overestimation was modestly higher in men vs. women, in children (0-10y) vs. adolescents (11-19y) and adults (20-44y, ≥45y), among adults of higher (≥6y) vs. lower (<6y) education, in Muslims vs. other religions (Christians, Hindus), and for the lowest vs. all other income groups. This overestimation was notably higher in young children (0-5y) vs. all other age groups and in the lowest vs. all other income groups. Underestimation was rarely observed, for example for milk intake (-56%) in young children (0-5y). The PC approach did not capture heterogeneity in validity of estimation of different dietary factors by age, mainly in children (0-5y, 6-10y). Spearman's correlations between individualized household estimates and 24hR data were higher for the AME (0.30-0.70) than PC (0.20-0.50) approach. Findings were similar with and without multivariate regression, with proportions of variance (R2) in 24hR intakes explained by the AME being generally greater than PC estimates, yet still low to modest.

CONCLUSIONS

In this national survey, established methods for estimating individual level intakes from household surveys produce overestimation of intakes of nearly all dietary indicators, with significant variation depending on the dietary factor and modest variation depending on individual characteristics. These findings suggest a need for new methods to estimate individual-level consumption from household survey estimates.

摘要

背景

准确的国家饮食摄入量信息,包括个体间的异质性,对于了解健康影响和制定政策重点至关重要。在低收入和中等收入国家,家庭支出调查是获取食物数据的主要来源,但对于个体摄入量的准确性存在不确定性。

目的

研究从家庭调查数据中估计的个体化饮食消费与个体 24 小时膳食回忆(24hR)之间的差异;并评估通过个体化家庭摄入量、饮食指标和个体特征(年龄、性别、教育、宗教、家庭收入)的方法的潜在异质性。

方法

我们评估了 2011-2012 年孟加拉国家庭综合调查(BIHS)的数据,该调查包括家庭层面的消费数据(5503 户)和来自这些家庭的个体层面的饮食数据(22173 名参与者)基于 24hR。对 33 种饮食指标(包括 9 种食物组、总能量、8 种宏量营养素和 15 种微量营养素)进行了家庭和 24hR 标准化和协调。使用两种方法(成人男性当量(AME)和人均(PC)方法)从家庭数据中估计个体消费。对于每个饮食指标,使用 Spearman 相关系数和单变量和多变量线性回归模型,评估家庭与个体平均估计值之间的差异,总体差异以及个体特征的分层差异。

结果

对于所有饮食因素,使用两种估计方法(每种方法 P<0.001),个体化家庭估计值均高于个体 24hR 摄入量,除淀粉类蔬菜(AME:P=0.15;PC:P=0.85)外。对于食物,高估范围从海鲜的 4%到水果的约 240%,对于营养素,从碳水化合物和多不饱和脂肪的 11%到维生素 C 的 55%,AME 和 PC 方法的高估程度相似。按分层,男性与女性、儿童(0-10 岁)与青少年(11-19 岁)和成年人(20-44 岁,≥45 岁)、教育程度较高(≥6 岁)与较低(<6 岁)的成年人、穆斯林与其他宗教(基督教、印度教)、最低与其他所有收入组相比,高估程度略高。这种高估在年幼的儿童(0-5 岁)与所有其他年龄组和最低与所有其他收入组之间尤为明显。很少观察到低估,例如儿童(0-5 岁)的牛奶摄入量(-56%)。PC 方法无法捕捉不同年龄组不同饮食因素估计的有效性的异质性,主要是在儿童(0-5 岁、6-10 岁)中。个体化家庭估计值与 24hR 数据之间的 Spearman 相关系数,AME(0.30-0.70)高于 PC(0.20-0.50)方法。多变量回归分析的结果相似,AME 解释 24hR 摄入量的方差比例(R2)通常大于 PC 估计值,但仍然较低至中等。

结论

在这项全国性调查中,从家庭调查中估计个体摄入量的既定方法会导致几乎所有饮食指标的摄入量高估,并且存在显著的差异,具体取决于饮食因素,并且差异较小,取决于个体特征。这些发现表明需要新的方法来从家庭调查估计中估计个体水平的消费。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892b/6110494/ad2b539203e2/pone.0202831.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验