Suppr超能文献

只有部分正常模式足以识别蛋白质中的线性相关性。

Only a Subset of Normal Modes is Sufficient to Identify Linear Correlations in Proteins.

机构信息

YYU Kampus Toki Konutlari , K2-6 No: 13 , 65080 Van , Turkey.

Department of Physics , Siirt University , 56100 Siirt , Turkey.

出版信息

J Chem Inf Model. 2018 Sep 24;58(9):1947-1961. doi: 10.1021/acs.jcim.8b00486. Epub 2018 Sep 6.

Abstract

Identification of correlated residues in proteins is very important for many areas of protein research such as drug design, protein domain classification, signal transmission, allostery and mutational studies. Pairwise residue correlations in proteins can be obtained from experimental and theoretical ensembles. Since it is difficult to obtain proteins in various conformational states experimentally, theoretical methods such as all-atom molecular dynamics simulations and normal-mode analysis are commonly used methods to obtain protein ensembles and, therefore, pairwise residue correlations. The extent of agreement for the correlations obtained with all-atom molecular dynamics and elastic network model based normal-mode analysis is an important issue to investigate due to orders of magnitude computational advantage in terms of wall time for normal-mode based calculation. We performed multiple microsecond long equilibrium classical molecular dynamics simulations for six proteins. We calculated normalized dynamical cross-correlations and linear mutual information as pairwise residue correlations from the trajectories of these simulations. Then, we calculated the same pairwise residue correlations with two elastic network model based normal-mode analysis methods and compared our results with the former. The results show that elastic network model based normal-mode analysis can provide a fast and accurate estimation of linear correlations within proteins. Finally, we observed that only a subset of modes is sufficient to obtain linear correlations in proteins. This conclusion has crucial implications for understanding correlations within very large protein assemblies such as viral capsids.

摘要

鉴定蛋白质中的相关残基对于蛋白质研究的许多领域都非常重要,例如药物设计、蛋白质结构域分类、信号传递、变构和突变研究。蛋白质中的成对残基相关性可以从实验和理论集合中获得。由于在实验中难以获得各种构象状态的蛋白质,因此通常使用全原子分子动力学模拟和正常模式分析等理论方法来获得蛋白质集合,从而获得成对残基相关性。由于正常模式计算在壁时间方面具有数量级的计算优势,因此,全原子分子动力学和基于弹性网络模型的正常模式分析获得的相关性之间的一致性程度是一个重要的研究问题。我们对 6 种蛋白质进行了多次微秒长的平衡经典分子动力学模拟。我们从这些模拟轨迹中计算了归一化动态互相关和线性互信息作为成对残基相关性。然后,我们使用两种基于弹性网络模型的正常模式分析方法计算了相同的成对残基相关性,并将结果与前者进行了比较。结果表明,基于弹性网络模型的正常模式分析可以快速准确地估计蛋白质内部的线性相关性。最后,我们观察到仅一部分模式就足以获得蛋白质中的线性相关性。这一结论对于理解非常大的蛋白质组装体(如病毒衣壳)中的相关性具有至关重要的意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验