Gheisari Soheila, Catchpoole Daniel R, Charlton Amanda, Melegh Zsombor, Gradhand Elise, Kennedy Paul J
Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia.
The Tumour Bank, The Children's Cancer Research Unit, The Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia.
Diagnostics (Basel). 2018 Aug 28;8(3):56. doi: 10.3390/diagnostics8030056.
Neuroblastoma is the most common extracranial solid malignancy in early childhood. Optimal management of neuroblastoma depends on many factors, including histopathological classification. Although histopathology study is considered the gold standard for classification of neuroblastoma histological images, computers can help to extract many more features some of which may not be recognizable by human eyes. This paper, proposes a combination of Scale Invariant Feature Transform with feature encoding algorithm to extract highly discriminative features. Then, distinctive image features are classified by Support Vector Machine classifier into five clinically relevant classes. The advantage of our model is extracting features which are more robust to scale variation compared to the Patched Completed Local Binary Pattern and Completed Local Binary Pattern methods. We gathered a database of 1043 histologic images of neuroblastic tumours classified into five subtypes. Our approach identified features that outperformed the state-of-the-art on both our neuroblastoma dataset and a benchmark breast cancer dataset. Our method shows promise for classification of neuroblastoma histological images.
神经母细胞瘤是幼儿期最常见的颅外实体恶性肿瘤。神经母细胞瘤的最佳治疗取决于许多因素,包括组织病理学分类。尽管组织病理学研究被认为是神经母细胞瘤组织学图像分类的金标准,但计算机可以帮助提取更多特征,其中一些特征可能是人眼无法识别的。本文提出将尺度不变特征变换与特征编码算法相结合,以提取具有高度判别力的特征。然后,通过支持向量机分类器将独特的图像特征分为五个临床相关类别。与补丁完成局部二值模式和完成局部二值模式方法相比,我们模型的优势在于提取对尺度变化更鲁棒的特征。我们收集了一个包含1043张神经母细胞瘤肿瘤组织学图像的数据库,这些图像分为五个亚型。我们的方法在我们的神经母细胞瘤数据集和一个基准乳腺癌数据集上识别出了优于现有技术的特征。我们的方法在神经母细胞瘤组织学图像分类方面显示出了前景。