Suppr超能文献

使用纹理、尺度不变特征变换(SIFT)特征和受生物启发的HMAX方法进行自动有丝分裂检测。

Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach.

作者信息

Irshad Humayun, Jalali Sepehr, Roux Ludovic, Racoceanu Daniel, Hwee Lim Joo, Naour Gilles Le, Capron Frédérique

机构信息

University of Joseph Fourier, Grenoble, France.

出版信息

J Pathol Inform. 2013 Mar 30;4(Suppl):S12. doi: 10.4103/2153-3539.109870. Print 2013.

Abstract

CONTEXT

According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations.

AIMS

The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques.

MATERIALS AND METHODS

We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT) features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM), and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT.

RESULTS

The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for an International Conference on Pattern Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure.

CONCLUSIONS

Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and classification rate.

摘要

背景

根据诺丁汉分级系统,乳腺癌组织病理学中的有丝分裂计数是癌症分级和预后所需的三个组成部分之一。手动计数有丝分裂既繁琐又容易受到读者间和读者内的显著差异影响。

目的

旨在研究使用机器学习技术进行有丝分裂检测的各种纹理特征以及分层模型和X(HMAX)生物启发式方法。

材料和方法

我们提出了一种辅助病理学家进行自动有丝分裂检测和计数的方法。该方法基于最有利的纹理特征组合,检查颜色空间不同通道之间的可分离性。蓝比率通道为组织病理学图像中的有丝分裂检测提供了更多判别信息。提取共生特征、游程特征和尺度不变特征变换(SIFT)特征并用于有丝分裂的分类。最后,进行分类以将候选补丁归入有丝分裂类或非有丝分裂类。评估了三种不同的分类器:决策树、线性核支持向量机(SVM)和非线性核SVM。我们还使用改进的HMAX生物启发模型评估了所提出框架的性能,并将结果与其他特征提取方法(如实密SIFT)进行比较。

结果

所提出的方法已在为2012年国际模式识别会议(ICPR)竞赛提供的乳腺癌组织学图像有丝分裂检测(MITOS)数据集上进行了测试。所提出的框架实现了76%的召回率、75%的精确率和76%的F值。

结论

已评估了用于有丝分裂检测的不同分类框架。在未来的工作中,我们打算在有丝分裂轮廓分割结果上计算特征,而不是在区域上,并用它们来提高检测和分类率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ac9/3678748/deacaf81390e/JPI-4-12-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验