Gheisari Soheila, Catchpoole Daniel R, Charlton Amanda, Kennedy Paul J
Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, Australia.
The Tumour Bank, The Children's Cancer Research Unit, The Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001 Westmead, NSW, Australia.
J Pathol Inform. 2018 May 2;9:17. doi: 10.4103/jpi.jpi_73_17. eCollection 2018.
Neuroblastoma is the most common extracranial solid tumor in children younger than 5 years old. Optimal management of neuroblastic tumors depends on many factors including histopathological classification. The gold standard for classification of neuroblastoma histological images is visual microscopic assessment. In this study, we propose and evaluate a deep learning approach to classify high-resolution digital images of neuroblastoma histology into five different classes determined by the Shimada classification.
We apply a combination of convolutional deep belief network (CDBN) with feature encoding algorithm that automatically classifies digital images of neuroblastoma histology into five different classes. We design a three-layer CDBN to extract high-level features from neuroblastoma histological images and combine with a feature encoding model to extract features that are highly discriminative in the classification task. The extracted features are classified into five different classes using a support vector machine classifier.
We constructed a dataset of 1043 neuroblastoma histological images derived from Aperio scanner from 125 patients representing different classes of neuroblastoma tumors.
The weighted average F-measure of 86.01% was obtained from the selected high-level features, outperforming state-of-the-art methods.
The proposed computer-aided classification system, which uses the combination of deep architecture and feature encoding to learn high-level features, is highly effective in the classification of neuroblastoma histological images.
神经母细胞瘤是5岁以下儿童最常见的颅外实体瘤。神经母细胞瘤的最佳治疗取决于许多因素,包括组织病理学分类。神经母细胞瘤组织学图像分类的金标准是视觉显微镜评估。在本研究中,我们提出并评估一种深度学习方法,将神经母细胞瘤组织学的高分辨率数字图像分类为根据岛田分类法确定的五个不同类别。
我们应用卷积深度信念网络(CDBN)与特征编码算法的组合,将神经母细胞瘤组织学数字图像自动分类为五个不同类别。我们设计了一个三层CDBN,从神经母细胞瘤组织学图像中提取高级特征,并与特征编码模型相结合,以提取在分类任务中具有高度判别力的特征。使用支持向量机分类器将提取的特征分类为五个不同类别。
我们构建了一个数据集,包含来自125名患者的1043张神经母细胞瘤组织学图像,这些图像来自Aperio扫描仪,代表不同类别的神经母细胞瘤肿瘤。
从选定的高级特征中获得了86.01%的加权平均F值,优于现有方法。
所提出的计算机辅助分类系统,使用深度架构和特征编码的组合来学习高级特征,在神经母细胞瘤组织学图像分类中非常有效。