Suppr超能文献

心磷脂介导呼吸链超复合物组装的分子机制

Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes.

作者信息

Arnarez C, Marrink S J, Periole X

机构信息

Groningen Biomolecular Sciences and Biotechnology Institute , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . Email:

出版信息

Chem Sci. 2016 Jul 1;7(7):4435-4443. doi: 10.1039/c5sc04664e. Epub 2016 Mar 15.

Abstract

Mitochondria produce most of the ATP consumed by cells through the respiratory chain in their inner membrane. This process involves protein complexes assembled into larger structures, the respiratory supercomplexes (SCs). Cardiolipin (CL), the mitochondrial signature phospholipid, is crucial for the structural and functional integrity of these SCs, but it is as yet unclear by what mechanism it operates. Our data disclose the mechanism for bulk CL in gluing SCs, steering their formation, and suggest how it may stabilize specific interfaces. We describe self-assembly molecular dynamics simulations of 9 cytochrome (CIII) dimers and 27 cytochrome c oxidase (CIV) monomers from bovine heart mitochondria embedded in a CL-containing model lipid bilayer, aimed at mimicking the crowdedness and complexity of mitochondrial membranes. The simulations reveal a large diversity of interfaces, including those of existing experimental CIII/CIV SC models and an alternative interface with CIV rotated by 180°. SC interfaces enclose 4 to 12 CLs, a ∼10 fold enrichment from the bulk. Half of these CLs glue complexes together using CL binding sites at the surface of both complexes. Free energy calculations demonstrate a larger CL binding strength, compared to other mitochondrial lipids, that is exclusive to these binding sites and results from non-additive electrostatic and van der Waals forces. This study provides a key example of the ability of lipids to selectively mediate protein-protein interactions by altering all ranges of forces, lubricate protein interfaces and act as traffic control agents steering proteins together.

摘要

线粒体通过其内膜中的呼吸链产生细胞消耗的大部分ATP。这一过程涉及组装成更大结构的蛋白质复合物,即呼吸超复合物(SCs)。心磷脂(CL)作为线粒体标志性磷脂,对这些超复合物的结构和功能完整性至关重要,但其作用机制尚不清楚。我们的数据揭示了大量CL在黏合超复合物、引导其形成方面的机制,并提出了其稳定特定界面的方式。我们描述了来自牛心线粒体的9个细胞色素c氧化酶(CIII)二聚体和27个细胞色素c氧化酶(CIV)单体嵌入含CL的模型脂质双层中的自组装分子动力学模拟,旨在模拟线粒体膜的拥挤程度和复杂性。模拟揭示了多种界面,包括现有实验性CIII/CIV超复合物模型的界面以及CIV旋转180°的另一种界面。超复合物界面包围着4到12个CL,比主体部分富集约10倍。其中一半的CL通过两个复合物表面的CL结合位点将复合物黏合在一起。自由能计算表明,与其他线粒体脂质相比,这些结合位点具有更大的CL结合强度,这是由非加和性静电和范德华力导致的。这项研究提供了一个关键例子,说明脂质能够通过改变各种力来选择性介导蛋白质-蛋白质相互作用,润滑蛋白质界面,并作为引导蛋白质聚集的交通控制因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef8/6014297/593df6b4adcb/c5sc04664e-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验