Suppr超能文献

通过共享任务推动临床自然语言处理技术的发展。

Advancing the State of the Art in Clinical Natural Language Processing through Shared Tasks.

作者信息

Filannino Michele, Uzuner Özlem

机构信息

George Mason University, Fairfax, VA, USA.

Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Yearb Med Inform. 2018 Aug;27(1):184-192. doi: 10.1055/s-0038-1667079. Epub 2018 Aug 29.

Abstract

OBJECTIVES

To review the latest scientific challenges organized in clinical Natural Language Processing (NLP) by highlighting the tasks, the most effective methodologies used, the data, and the sharing strategies.

METHODS

We harvested the literature by using Google Scholar and PubMed Central to retrieve all shared tasks organized since 2015 on clinical NLP problems on English data.

RESULTS

We surveyed 17 shared tasks. We grouped the data into four types (synthetic, drug labels, social data, and clinical data) which are correlated with size and sensitivity. We found named entity recognition and classification to be the most common tasks. Most of the methods used to tackle the shared tasks have been data-driven. There is homogeneity in the methods used to tackle the named entity recognition tasks, while more diverse solutions are investigated for relation extraction, multi-class classification, and information retrieval problems.

CONCLUSIONS

There is a clear trend in using data-driven methods to tackle problems in clinical NLP. The availability of more and varied data from different institutions will undoubtedly lead to bigger advances in the field, for the benefit of healthcare as a whole.

摘要

目的

通过突出任务、使用的最有效方法、数据和共享策略,回顾临床自然语言处理(NLP)中最新的科学挑战。

方法

我们通过使用谷歌学术和PubMed Central收集文献,以检索自2015年以来针对英语数据上的临床NLP问题组织的所有共享任务。

结果

我们调查了17个共享任务。我们将数据分为四种类型(合成数据、药品标签、社会数据和临床数据),这些类型与规模和敏感性相关。我们发现命名实体识别和分类是最常见的任务。用于解决共享任务的大多数方法都是数据驱动的。用于解决命名实体识别任务的方法具有同质性,而针对关系提取、多类分类和信息检索问题则研究了更多样化的解决方案。

结论

使用数据驱动方法解决临床NLP问题存在明显趋势。来自不同机构的更多样化数据的可用性无疑将推动该领域取得更大进展,造福于整个医疗保健行业。

相似文献

引用本文的文献

6
Medical Information Extraction in the Age of Deep Learning.深度学习时代的医学信息抽取。
Yearb Med Inform. 2020 Aug;29(1):208-220. doi: 10.1055/s-0040-1702001. Epub 2020 Aug 21.
8
AI in Health: State of the Art, Challenges, and Future Directions.健康领域的人工智能:现状、挑战与未来方向。
Yearb Med Inform. 2019 Aug;28(1):16-26. doi: 10.1055/s-0039-1677908. Epub 2019 Aug 16.

本文引用的文献

2

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验