Bai PeiRui, Udupa Jayaram K, Tong YuBing, Xie ShiPeng, Torigian Drew A
College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, China.
Medical Image Processing Group, Goddard Building - 6 floor, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA 19104.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10134. doi: 10.1117/12.2254862. Epub 2017 Mar 3.
Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in automated image and object analytics is to automatically trim the given image stack into image volumes exactly satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the cranio-caudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the mean localization error for the boundaries of superior of thorax () and inferior of thorax (), expressed as number of slices (slice spacing ≈ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 (using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm (using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual landmarks and other object analytics applications are currently being pursued. and the skeleton and pleural spaces used as a reference objects.
用于临床决策的放射成像及图像解读大多针对每个身体部位,如头颈部、胸部、腹部、骨盆和四肢。为了实现图像分析自动化并确保结果的一致性,对身体部位以及其中各种解剖对象、组织区域和分区进行标准化定义变得至关重要。假设已有身体部位的标准化定义,自动图像和对象分析中早期的一个基本步骤是将给定的图像堆栈自动裁剪为完全符合身体部位定义的图像体积。本文基于虚拟地标概念提出了该问题的解决方案,并在全身正电子发射断层扫描/计算机断层扫描(PET/CT)上进行了评估。该方法首先选择一个(组)参考对象,对其进行大致分割,并识别该对象的虚拟地标。然后通过神经网络回归器学习这些地标与身体部位在头足方向上的边界位置之间的几何关系,并预测这些位置。基于180例近乎全身PET/CT扫描(其中包括34例全身PET/CT扫描)的低剂量平扫CT图像,以切片数量(切片间距约4mm)表示,以骨骼或胸膜腔作为参考对象时,胸部上方()和胸部下方()边界的平均定位误差分别为3.2(使用骨骼)和3.5(使用胸膜腔),或以毫米表示分别为13、10mm(使用骨骼)和10.5、20mm(使用胸膜腔)。目前正在通过优化对象和虚拟地标的选择以及其他对象分析应用来提高此性能。以及将骨骼和胸膜腔用作参考对象。