Hussein Sarfaraz, Green Aileen, Watane Arjun, Reiter David, Chen Xinjian, Papadakis Georgios Z, Wood Bradford, Cypess Aaron, Osman Medhat, Bagci Ulas
IEEE Trans Med Imaging. 2017 Mar;36(3):734-744. doi: 10.1109/TMI.2016.2636188. Epub 2016 Dec 6.
In this paper, we investigate the automatic detection of white and brown adipose tissues using Positron Emission Tomography/Computed Tomography (PET/CT) scans, and develop methods for the quantification of these tissues at the whole-body and body-region levels. We propose a patient-specific automatic adiposity analysis system with two modules. In the first module, we detect white adipose tissue (WAT) and its two sub-types from CT scans: Visceral Adipose Tissue (VAT) and Subcutaneous Adipose Tissue (SAT). This process relies conventionally on manual or semi-automated segmentation, leading to inefficient solutions. Our novel framework addresses this challenge by proposing an unsupervised learning method to separate VAT from SAT in the abdominal region for the clinical quantification of central obesity. This step is followed by a context driven label fusion algorithm through sparse 3D Conditional Random Fields (CRF) for volumetric adiposity analysis. In the second module, we automatically detect, segment, and quantify brown adipose tissue (BAT) using PET scans because unlike WAT, BAT is metabolically active. After identifying BAT regions using PET, we perform a co-segmentation procedure utilizing asymmetric complementary information from PET and CT. Finally, we present a new probabilistic distance metric for differentiating BAT from non-BAT regions. Both modules are integrated via an automatic body-region detection unit based on one-shot learning. Experimental evaluations conducted on 151 PET/CT scans achieve state-of-the-art performances in both central obesity as well as brown adiposity quantification.
在本文中,我们研究了利用正电子发射断层扫描/计算机断层扫描(PET/CT)对白色和棕色脂肪组织进行自动检测,并开发了在全身和身体区域层面上对这些组织进行量化的方法。我们提出了一个具有两个模块的针对患者的自动肥胖分析系统。在第一个模块中,我们从CT扫描中检测白色脂肪组织(WAT)及其两种亚型:内脏脂肪组织(VAT)和皮下脂肪组织(SAT)。传统上,这个过程依赖于手动或半自动分割,导致效率低下的解决方案。我们的新框架通过提出一种无监督学习方法来解决这一挑战,该方法用于在腹部区域将VAT与SAT分离,以进行中心性肥胖的临床量化。接下来,通过稀疏3D条件随机场(CRF)的上下文驱动标签融合算法进行体积肥胖分析。在第二个模块中,我们使用PET扫描自动检测、分割和量化棕色脂肪组织(BAT),因为与WAT不同,BAT具有代谢活性。在使用PET识别出BAT区域后,我们利用PET和CT的不对称互补信息执行共分割程序。最后,我们提出了一种新的概率距离度量,用于区分BAT区域和非BAT区域。两个模块通过基于一次性学习的自动身体区域检测单元进行集成。对151例PET/CT扫描进行的实验评估在中心性肥胖以及棕色脂肪量化方面均达到了当前的最佳性能。