International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain.
Departamento de Química, Facultad de Ciencias , University of Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain.
ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32773-32781. doi: 10.1021/acsami.8b07245. Epub 2018 Sep 12.
Polymeric electrospun fibers are becoming popular in microbial biotechnology because of their exceptional physicochemical characteristics, biodegradability, surface-to-volume ratio, and compatibility with biological systems, which give them a great potential as microbial supports to be used in production processes or environmental applications. In this work, we analyzed and compared the ability of Escherichia coli, Pseudomonas putida, Brevundimonas diminuta, and Sphingobium fuliginis to develop biofilms on different types of polycaprolactone (PCL) microfibers. These bacterial species are relevant in the production of biobased chemicals, enzymes, and proteins for therapeutic use and bioremediation. The obtained results demonstrated that all selected species were able to attach efficiently to the PCL microfibers. Also, the ability of pure cultures of S. fuliginis (former Flavobacterium sp. ATCC 27551, a very relevant strain in the bioremediation of organophosphorus compounds) to form dense biofilms was observed for the first time, opening the possibility of new applications for this microorganism. This material showed to have a high microbial loading capacity, regardless of the mesh density and fiber diameter. A comparative analysis between PCL and polylactic acid (PLA) electrospun microfibers indicated that both surfaces have a similar bacterial loading capacity, but the former material showed higher resistance to microbial degradation than PLA.
聚合物静电纺纤维因其独特的物理化学特性、生物降解性、表面积与体积比以及与生物系统的相容性,在微生物生物技术中越来越受欢迎,它们作为微生物支持物在生产过程或环境应用中具有巨大的潜力。在这项工作中,我们分析并比较了大肠杆菌、恶臭假单胞菌、纤细假单胞菌和黑臭单胞菌在不同类型的聚己内酯(PCL)微纤维上形成生物膜的能力。这些细菌在生物基化学品、酶和治疗用途蛋白质的生产以及生物修复中具有重要意义。获得的结果表明,所有选定的物种都能够有效地附着在 PCL 微纤维上。此外,首次观察到纯培养的黑臭单胞菌(以前的黄杆菌属 ATCC 27551,是有机磷化合物生物修复中非常重要的菌株)形成密集生物膜的能力,为该微生物开辟了新的应用可能性。无论网孔密度和纤维直径如何,这种材料都显示出很高的微生物负载能力。对聚己内酯和聚乳酸(PLA)静电纺微纤维的比较分析表明,两种表面都具有相似的细菌负载能力,但前者材料比 PLA 具有更高的抗微生物降解能力。