Suppr超能文献

基于垂直排列 MoS 薄片网络的高选择性和可逆的 NO 气体传感器。

Highly selective and reversible NO gas sensor using vertically aligned MoS flake networks.

机构信息

Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur-342011, India.

出版信息

Nanotechnology. 2018 Nov 16;29(46):464001. doi: 10.1088/1361-6528/aade20. Epub 2018 Aug 31.

Abstract

We demonstrate a highly selective and reversible NO resistive gas sensor using vertically aligned MoS (VA-MoS) flake networks. We synthesized horizontally and vertically aligned MoS flakes on SiO/Si substrate using a kinetically controlled rapid growth CVD process. Uniformly interconnected MoS flakes and their orientation were confirmed by scanning electron microscopy, x-ray diffraction, Raman spectroscopy and x-ray photoelectron spectroscopy. The VA-MoS gas sensor showed two times higher response to NO compared to horizontally aligned MoS at room temperature. Moreover, the sensors exhibited a dramatically improved complete recovery upon NO exposure at its low optimum operating temperatures (100 °C). In addition, the sensing performance of the sensors was investigated with exposure to various gases such as NH, CO, H, CH and HS. It was observed that high response to gas directly correlates with the strong interaction of gas molecules on edge sites of the VA-MoS. The VA-MoS gas sensor exhibited high response with good reversibility and selectivity towards NO as a result of the high aspect ratio as well as high adsorption energy on exposed edge sites.

摘要

我们使用垂直排列的 MoS(VA-MoS)薄片网络展示了一种高选择性和可逆的 NO 电阻气体传感器。我们使用动力学控制的快速生长 CVD 工艺在 SiO2/Si 衬底上合成了水平和垂直排列的 MoS 薄片。通过扫描电子显微镜、X 射线衍射、拉曼光谱和 X 射线光电子能谱证实了均匀互连的 MoS 薄片及其取向。与在室温下水平排列的 MoS 相比,VA-MoS 气体传感器对 NO 的响应高出两倍。此外,传感器在其低最佳工作温度(100°C)下暴露于 NO 时表现出显著改善的完全恢复。此外,还研究了传感器对各种气体(如 NH3、CO、H2、CH4 和 H2S)的传感性能。观察到气体的高响应与气体分子在 VA-MoS 的边缘位置的强相互作用直接相关。VA-MoS 气体传感器由于高纵横比以及在暴露的边缘位置上的高吸附能,对 NO 表现出高响应、良好的可逆性和选择性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验