Zhu Cheng, Qi Zhen, Beck Victor A, Luneau Mathilde, Lattimer Judith, Chen Wen, Worsley Marcus A, Ye Jianchao, Duoss Eric B, Spadaccini Christopher M, Friend Cynthia M, Biener Juergen
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.
Harvard University, Cambridge, MA 02138, USA.
Sci Adv. 2018 Aug 31;4(8):eaas9459. doi: 10.1126/sciadv.aas9459. eCollection 2018 Aug.
Monolithic nanoporous metals, derived from dealloying, have a unique bicontinuous solid/void structure that provides both large surface area and high electrical conductivity, making them ideal candidates for various energy applications. However, many of these applications would greatly benefit from the integration of an engineered hierarchical macroporous network structure that increases and directs mass transport. We report on 3D (three-dimensional)-printed hierarchical nanoporous gold (3DP-hnp-Au) with engineered nonrandom macroarchitectures by combining 3D printing and dealloying. The material exhibits three distinct structural length scales ranging from the digitally controlled macroporous network structure (10 to 1000 μm) to the nanoscale pore/ligament morphology (30 to 500 nm) controlled by dealloying. Supercapacitance, pressure drop, and catalysis measurements reveal that the 3D hierarchical nature of our printed nanoporous metals markedly improves mass transport and reaction rates for both liquids and gases. Our approach can be applied to a variety of alloy systems and has the potential to revolutionize the design of (electro-)chemical plants by changing the scaling relations between volume and catalyst surface area.
通过脱合金化得到的整体式纳米多孔金属具有独特的双连续固体/孔隙结构,兼具大表面积和高导电性,使其成为各种能源应用的理想候选材料。然而,许多此类应用若能集成一种可增加并引导质量传输的工程化分级大孔网络结构,将受益匪浅。我们通过结合3D打印和脱合金化技术,报道了具有工程化非随机宏观结构的三维(3D)打印分级纳米多孔金(3DP-hnp-Au)。该材料呈现出三个不同的结构长度尺度,从数字控制的大孔网络结构(10至1000μm)到由脱合金化控制的纳米级孔隙/韧带形态(30至500nm)。超级电容、压降和催化测量结果表明,我们打印的纳米多孔金属的3D分级特性显著提高了液体和气体的质量传输和反应速率。我们的方法可应用于多种合金体系,并有可能通过改变体积与催化剂表面积之间的比例关系,彻底改变(电)化工厂的设计。