College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China.
National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, China.
PLoS One. 2018 Sep 5;13(9):e0201463. doi: 10.1371/journal.pone.0201463. eCollection 2018.
We propose a convolutional sparse coding (CSC) for super resolution (CSC-SR) algorithm with a joint Bayesian learning strategy. Due to the unknown parameters in solving CSC-SR, the performance of the algorithm depends on the choice of the parameter. To this end, a coupled Beta-Bernoulli process is employed to infer appropriate filters and sparse coding maps (SCM) for both low resolution (LR) image and high resolution (HR) image. The filters and the SCMs are learned in a joint inference. The experimental results validate the advantages of the proposed approach over the previous CSC-SR and other state-of-the-art SR methods.
我们提出了一种具有联合贝叶斯学习策略的卷积稀疏编码 (CSC) 超分辨率 (CSC-SR) 算法。由于在求解 CSC-SR 时存在未知参数,因此算法的性能取决于参数的选择。为此,我们采用耦合贝塔-伯努利过程来推断适用于低分辨率 (LR) 图像和高分辨率 (HR) 图像的滤波器和稀疏编码图 (SCM)。滤波器和 SCM 在联合推断中进行学习。实验结果验证了该方法相对于之前的 CSC-SR 和其他最先进的 SR 方法的优势。