Suppr超能文献

联合贝叶斯卷积稀疏编码的图像超分辨率重建。

Joint bayesian convolutional sparse coding for image super-resolution.

机构信息

College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China.

National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

PLoS One. 2018 Sep 5;13(9):e0201463. doi: 10.1371/journal.pone.0201463. eCollection 2018.

Abstract

We propose a convolutional sparse coding (CSC) for super resolution (CSC-SR) algorithm with a joint Bayesian learning strategy. Due to the unknown parameters in solving CSC-SR, the performance of the algorithm depends on the choice of the parameter. To this end, a coupled Beta-Bernoulli process is employed to infer appropriate filters and sparse coding maps (SCM) for both low resolution (LR) image and high resolution (HR) image. The filters and the SCMs are learned in a joint inference. The experimental results validate the advantages of the proposed approach over the previous CSC-SR and other state-of-the-art SR methods.

摘要

我们提出了一种具有联合贝叶斯学习策略的卷积稀疏编码 (CSC) 超分辨率 (CSC-SR) 算法。由于在求解 CSC-SR 时存在未知参数,因此算法的性能取决于参数的选择。为此,我们采用耦合贝塔-伯努利过程来推断适用于低分辨率 (LR) 图像和高分辨率 (HR) 图像的滤波器和稀疏编码图 (SCM)。滤波器和 SCM 在联合推断中进行学习。实验结果验证了该方法相对于之前的 CSC-SR 和其他最先进的 SR 方法的优势。

相似文献

1
Joint bayesian convolutional sparse coding for image super-resolution.
PLoS One. 2018 Sep 5;13(9):e0201463. doi: 10.1371/journal.pone.0201463. eCollection 2018.
2
Variational bayesian super resolution.
IEEE Trans Image Process. 2011 Apr;20(4):984-99. doi: 10.1109/TIP.2010.2080278. Epub 2010 Sep 27.
3
Coupled dictionary training for image super-resolution.
IEEE Trans Image Process. 2012 Aug;21(8):3467-78. doi: 10.1109/TIP.2012.2192127. Epub 2012 Apr 3.
4
Sparse bayesian learning of filters for efficient image expansion.
IEEE Trans Image Process. 2010 Jun;19(6):1480-90. doi: 10.1109/TIP.2010.2043010. Epub 2010 Mar 8.
5
Variational Bayesian image restoration based on a product of t-distributions image prior.
IEEE Trans Image Process. 2008 Oct;17(10):1795-805. doi: 10.1109/TIP.2008.2002828.
7
Maximum a posteriori video super-resolution using a new multichannel image prior.
IEEE Trans Image Process. 2010 Jun;19(6):1451-64. doi: 10.1109/TIP.2010.2042115. Epub 2010 Feb 2.
8
Super-resolution image reconstruction using non-parametric Bayesian INLA approximation.
IEEE Trans Image Process. 2012 Aug;21(8):3491-501. doi: 10.1109/TIP.2012.2197016. Epub 2012 May 1.
9
A unified learning framework for single image super-resolution.
IEEE Trans Neural Netw Learn Syst. 2014 Apr;25(4):780-92. doi: 10.1109/TNNLS.2013.2281313.
10
Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images.
IEEE Trans Image Process. 2012 Jan;21(1):130-44. doi: 10.1109/TIP.2011.2160072. Epub 2011 Jun 20.

本文引用的文献

1
Discriminative Bayesian Dictionary Learning for Classification.
IEEE Trans Pattern Anal Mach Intell. 2016 Dec;38(12):2374-2388. doi: 10.1109/TPAMI.2016.2527652. Epub 2016 Feb 11.
2
A Bayesian Nonparametric Approach to Image Super-Resolution.
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):346-58. doi: 10.1109/TPAMI.2014.2321404.
3
Depth superresolution by transduction.
IEEE Trans Image Process. 2015 May;24(5):1524-35. doi: 10.1109/TIP.2015.2405342.
4
Single image super-resolution with multiscale similarity learning.
IEEE Trans Neural Netw Learn Syst. 2013 Oct;24(10):1648-59. doi: 10.1109/TNNLS.2013.2262001.
5
Insights into analysis operator learning: from patch-based sparse models to higher order MRFs.
IEEE Trans Image Process. 2014 Mar;23(3):1060-72. doi: 10.1109/TIP.2014.2299065.
6
Alternatively Constrained Dictionary Learning For Image Superresolution.
IEEE Trans Cybern. 2014 Mar;44(3):366-77. doi: 10.1109/TCYB.2013.2256347. Epub 2013 May 2.
7
Coupled dictionary training for image super-resolution.
IEEE Trans Image Process. 2012 Aug;21(8):3467-78. doi: 10.1109/TIP.2012.2192127. Epub 2012 Apr 3.
8
Joint learning for single-image super-resolution via a coupled constraint.
IEEE Trans Image Process. 2012 Feb;21(2):469-80. doi: 10.1109/TIP.2011.2161482.
9
Image super-resolution via sparse representation.
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验