Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
J Neurosci Methods. 2018 Nov 1;309:161-174. doi: 10.1016/j.jneumeth.2018.08.027. Epub 2018 Sep 2.
Technological advances are enabling us to collect multimodal datasets at an increasing depth and resolution while with decreasing labors. Understanding complex interactions among multimodal datasets, however, is challenging.
In this study, we tested the interaction effect of multimodal datasets using a novel method called the kernel machine for detecting higher order interactions among biologically relevant multimodal data. Using a semiparametric method on a reproducing kernel Hilbert space, we formulated the proposed method as a standard mixed-effects linear model and derived a score-based variance component statistic to test higher order interactions between multimodal datasets.
The method was evaluated using extensive numerical simulation and real data from the Mind Clinical Imaging Consortium with both schizophrenia patients and healthy controls. Our method identified 13-triplets that included 6 gene-derived SNPs, 10 ROIs, and 6 gene-specific DNA methylations that are correlated with the changes in hippocampal volume, suggesting that these triplets may be important for explaining schizophrenia-related neurodegeneration.
COMPARISON WITH EXISTING METHOD(S): The performance of the proposed method is compared with the following methods: test based on only first and first few principal components followed by multiple regression, and full principal component analysis regression, and the sequence kernel association test.
With strong evidence (p-value ≤0.000001), the triplet (MAGI2, CRBLCrus1.L, FBXO28) is a significant biomarker for schizophrenia patients. This novel method can be applicable to the study of other disease processes, where multimodal data analysis is a common task.
技术进步使我们能够以越来越低的劳动成本,以越来越高的深度和分辨率收集多模态数据集。然而,理解多模态数据集之间的复杂相互作用具有挑战性。
在这项研究中,我们使用一种称为核机器的新方法来测试多模态数据集的相互作用效应,用于检测与生物学相关的多模态数据之间的高阶相互作用。我们在再生核希尔伯特空间上使用半参数方法,将所提出的方法表述为标准混合效应线性模型,并推导出基于得分的方差分量统计量来测试多模态数据集之间的高阶相互作用。
该方法通过广泛的数值模拟和来自 Mind Clinical Imaging Consortium 的真实数据进行了评估,包括精神分裂症患者和健康对照者。我们的方法确定了 13 个三重体,其中包括 6 个基因衍生的 SNPs、10 个 ROI 和 6 个基因特异性 DNA 甲基化,这些三重体与海马体积的变化相关,表明这些三重体可能对解释精神分裂症相关的神经退行性变很重要。
与以下方法相比,提出的方法的性能进行了比较:仅基于第一和前几个主成分的测试,然后是多元回归,以及全主成分分析回归和序列核关联测试。
有强有力的证据(p 值≤0.000001)表明,三重体(MAGI2、CRBLCrus1.L、FBXO28)是精神分裂症患者的显著生物标志物。这种新方法可适用于其他疾病过程的研究,其中多模态数据分析是一项常见任务。