Suppr超能文献

基于分层线性回归模型的脑电图手部动作无创解码

Non-invasive decoding of hand movements from electroencephalography based on a hierarchical linear regression model.

作者信息

Zhang Jinhua, Wang Baozeng, Li Ting, Hong Jun

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China.

College of Computer Science, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, People's Republic of China.

出版信息

Rev Sci Instrum. 2018 Aug;89(8):084303. doi: 10.1063/1.5049191.

Abstract

A non-invasive brain-computer interface (BCI) is an assistive technology with basic communication and control capabilities that decodes continuous electroencephalography (EEG) signals generated by the human brain and converts them into commands to control external devices naturally. However, the decoding efficiency is limited at present because it is unclear which decoding parameters can be used to effectively improve the overall decoding performance. In this paper, five subjects performed experiments involving self-initiated upper-limb movements during three experimental phases. The decoding method based on a hierarchical linear regression (HLR) model was devised to investigate the influence of decoding efficiency according to the characteristic parameters of brain functional networks. Then the optimal set of channels and most sensitive frequency bands were selected using the value from a Kruskal-Wallis test in the experimental phases. Eventually, the trajectories of free movement and conical helix movement could be decoded using HLR. The experimental result showed that the Pearson correlation coefficient (R) between the measured and decoded paths is 0.66 with HLR, which was higher than the value of 0.46 obtained with the multiple linear regression model. The HLR from a decoding efficiency perspective holds promise for the development of EEG-based BCI to aid in the restoration of hand movements in post-stroke rehabilitation.

摘要

非侵入式脑机接口(BCI)是一种具有基本通信和控制能力的辅助技术,它对人脑产生的连续脑电图(EEG)信号进行解码,并将其转换为命令以自然地控制外部设备。然而,目前解码效率有限,因为尚不清楚哪些解码参数可用于有效提高整体解码性能。本文中,五名受试者在三个实验阶段进行了涉及自主上肢运动的实验。设计了基于分层线性回归(HLR)模型的解码方法,以根据脑功能网络的特征参数研究解码效率的影响。然后在实验阶段使用Kruskal-Wallis检验的 值选择最佳通道集和最敏感频段。最终,可使用HLR对自由运动和锥形螺旋运动的轨迹进行解码。实验结果表明,使用HLR时,测量路径与解码路径之间的Pearson相关系数(R)为0.66,高于使用多元线性回归模型获得的0.46的值。从解码效率角度来看,HLR有望推动基于脑电图的BCI发展,以帮助中风后康复中手部运动的恢复。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验