Suppr超能文献

神经疾病中甘氨酸受体转运受损

Impaired Glycine Receptor Trafficking in Neurological Diseases.

作者信息

Schaefer Natascha, Roemer Vera, Janzen Dieter, Villmann Carmen

机构信息

Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany.

出版信息

Front Mol Neurosci. 2018 Aug 21;11:291. doi: 10.3389/fnmol.2018.00291. eCollection 2018.

Abstract

Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits ( and ). studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.

摘要

离子型甘氨酸受体(GlyRs)在成体脊髓和脑干中实现快速的突触神经传递。抑制性GlyR是一种跨膜的甘氨酸门控氯离子通道。未成熟的GlyR蛋白在从内质网运输至高尔基体并穿过高尔基体的过程中会经历各种加工步骤,例如折叠、组装和成熟,在高尔基体中会发生翻译后修饰,如糖基化。成熟的受体通过微管向前运输至细胞表面并插入神经元膜,随后进行突触聚集。受体蛋白的正常生命周期还包括内化、再循环和降解等进一步过程。已证明GlyR生命周期中的缺陷,例如蛋白质成熟和降解受损,是各种神经疾病病理机制的基础。神经疾病惊吓症主要由甘氨酸能功能障碍引起,这主要是由于编码GlyR亚基( 和 )的基因中的错义突变所致。 研究表明,惊吓症的大多数隐性形式与受体生物合成受损有关。另一种具有与惊吓症相似表型的神经疾病是僵人综合征(SPS)的一种特殊形式,这很可能是由于GlyR自身抗体的产生所致。GlyR自身抗体的结合导致受体内化增强。在这里,我们专注于GlyRs的正常生命周期,重点关注组装和成熟、受体运输、突触后整合和聚集以及GlyR内化/再循环/降解。此外,本综述强调了在疾病状态下这些过程受损的研究结果,例如神经元内质网 - 高尔基体运输紊乱是人类惊吓症隐性形式的主要病理机制。在SPS中,自身抗体与GlyR结合后受体内化增强已被证明是人类病理的基础。此外,我们讨论了现有的惊吓症小鼠模型如何增加了我们目前对GlyR运输途径和功能的了解。本综述进一步阐明了最初在惊吓症患者中鉴定出的GlyR变体的受体运输,并解释了SPS患者中GlyRs生命周期的变化在受体水平上的结构和功能后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7613/6110938/b006faa85187/fnmol-11-00291-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验