Suppr超能文献

利用皮质厚度数据进行生物脑年龄预测:一项大规模队列研究。

Biological Brain Age Prediction Using Cortical Thickness Data: A Large Scale Cohort Study.

作者信息

Aycheh Habtamu M, Seong Joon-Kyung, Shin Jeong-Hyeon, Na Duk L, Kang Byungkon, Seo Sang W, Sohn Kyung-Ah

机构信息

Department of Software and Computer Engineering, Ajou University, Suwon, South Korea.

School of Biomedical Engineering, Korea University, Seoul, South Korea.

出版信息

Front Aging Neurosci. 2018 Aug 22;10:252. doi: 10.3389/fnagi.2018.00252. eCollection 2018.

Abstract

Brain age estimation from anatomical features has been attracting more attention in recent years. This interest in brain age estimation is motivated by the importance of biological age prediction in health informatics, with an application to early prediction of neurocognitive disorders. It is well-known that normal brain aging follows a specific pattern, which enables researchers and practitioners to predict the age of a human's brain from its degeneration. In this paper, we model brain age predicted by cortical thickness data gathered from large cohort brain images. We collected 2,911 cognitively normal subjects (age 45-91 years) at a single medical center and acquired their brain magnetic resonance (MR) images. All images were acquired using the same scanner with the same protocol. We propose to first apply Sparse Group Lasso (SGL) for feature selection by utilizing the brain's anatomical grouping. Once the features are selected, a non-parametric non-linear regression using the Gaussian Process Regression (GPR) algorithm is applied to fit the final age prediction model. Experimental results demonstrate that the proposed method achieves the mean absolute error of 4.05 years, which is comparable with or superior to several recent methods. Our method can also be a critical tool for clinicians to differentiate patients with neurodegenerative brain disease by extracting a cortical thinning pattern associated with normal aging.

摘要

近年来,基于解剖特征的脑龄估计越来越受到关注。对脑龄估计的这种兴趣源于生物年龄预测在健康信息学中的重要性,其应用于神经认知障碍的早期预测。众所周知,正常的脑老化遵循特定模式,这使得研究人员和从业者能够从大脑的退化情况预测人类大脑的年龄。在本文中,我们对通过从大型队列脑图像收集的皮质厚度数据预测的脑龄进行建模。我们在单个医疗中心收集了2911名认知正常的受试者(年龄45 - 91岁),并获取了他们的脑磁共振(MR)图像。所有图像均使用同一台扫描仪按照相同协议采集。我们建议首先应用稀疏组套索(SGL)通过利用大脑的解剖分组进行特征选择。一旦选择了特征,就应用使用高斯过程回归(GPR)算法的非参数非线性回归来拟合最终的年龄预测模型。实验结果表明,所提出的方法实现了4.05岁的平均绝对误差,与最近的几种方法相当或更优。我们的方法还可以成为临床医生通过提取与正常老化相关的皮质变薄模式来区分患有神经退行性脑疾病患者的关键工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/6113379/f7df6a36ce1c/fnagi-10-00252-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验